Biological Treatments in Psychiatry

Nicholas Hoeh University of Auckland Faculty of Medicine and Health Sciences 2012

From Jeff Johnson, Hybrid Medical Animation

• Placebo!!

Neurotransmitters=provide clues to how medications work and side effects!!

Neurotransmitters

Neurotransmitters

Medications: What class are you!?!

Previous Treatments

- Convulsive treatments using camphor in the 16th century for psychosis and mania
- spa treatments
- Fever and shock treatments
- Lobotomies

Overview of Neurobiology of Mood Disorders

- Genetic and Epigenetic findings
- Neuroanatomic/ Imaging Findings
- Biochemical explanations
- Neuroendocrine pathology

Immune System Dysregulation

Current Biological Treatments

- Psychopharmacology*
- Electroconvulsive treatment (ECT)*
- Transcranial Magnetic Stimulation
- Vagal Nerve Stimulation
- Light Treatment*
- Psychosurgery
 - * Routinely used currently

Before you Prescribe

Discussion with patient and family

- Working diagnosis
- Various treatment options, risks/benefits
- Rationale for specific medication
- Side effects, course (timeline) of treatment

After you prescribe

• Document in the file:

- What was done and why
- When was it done
- Who was involved in the decision making

Guiding the selection of a medication:

Psychopharmacology

- Antidepressants
- Anti-anxiety medications
- Mood Stabilisers
- Antipsychotics
- Anticholinergics
- Miscellaneous agents

Classes

- Tricyclic AD's
- MAOI's
- Serotonergic AD's
- "Atypical" AD's

Why do they work?

MONOAMINE HYPOTHESIS

MAO enzyme monoamine destroying neurotransmitter neurotransmitter

DEPRESSION -- caused by neurotransmitter deficiency

Stahl S M, <u>Essential</u> Psychopharmacology (2000)

NORMAL STATE -- no depression

MAO inhibitor blocks the enzyme from destroying monoamine neurotransmitter

reuptake pump blocked by antidepressant Increase in neurotransmitters causes return to normal state

Classes

– Tricyclics

- Imipramine, amitryptiline, nortriptiline, desipramine, doxepin, clomipramine
- Mechanism of action

Affects 5 Neurotransmitter systems

- Serotonin reuptake inhibition (mild)
- Anticholinergic
- Alpha adrenergic antagonist
- Antihistamine

Classes

- Tricyclics
 - Adverse Effects
 - Anticholinergic signs
 - Dry mouth, blurred vision, urinary retention, constipation, memory disturbances
 - Antihistaminic effects
 - Sedation and weight gain
 - Alpha adrenergic blockade
 - Dizziness and hypotension
 - Potential lethality in OD !!!!!!

- MAOI's (monoamine oxidase inhibitors)
 - Tranylcypramine
 - Monoamine oxidase breaks down norepinephrine and serotonin in the presynaptic neuron
 - Inhibition of MAO results in more NE and 5HT for release into the synapse

MAOI's

- Underutilized despite its high efficacy
- Should always be an option
- Adverse effects
 - Hypertensive crisis when tyramine restricted diet (MAOI diet) is not adhered to
 - Tyramine is a pressor agent found in certain foods (red wine, yeast, broad beans, marmite, vegemite, smoked preserved meats, aged cheeses), meperidine, dextrometorphan, cocaine, other antidepressants

- SSRI's (Selective Serotonin Reuptake Inhibitors)
 - Examples
 - fluoxetine (prozac), paroxetine (aropax), citalopram (cipramil), sertraline (zoloft)
 - Mode of action
 - Serotonin (5HT) reuptake inhibition resulting in more serotonin in the synapse

SSRI's

- Safety in overdose
- Adverse effects
 - GI, headache, sexual dysfunction, agitation, sleep disturbance
 - Beware of P450 interactions
 - Serotonin syndrome

- Atypical/Novel (in NZ)
 - SNRI (venlafaxine/mirtazapine)
 - 5HT and Noradrenergic reuptake inhibition
 - For treatment resistant depression
 - NDRI (bupropion)
 - Noradrenergic and dopamine reuptake inhibition
 - No weight gain, no sexual dysfunction
 - Also for anti-smoking

Indications/ USES (R. Baldessarini 1997)

Effective or probably effective

- Acute MDE, prevention of early relapse and later relapse
- Panic component of panic-agoraphobia syndrome (not bupropion)
- Enuresis (TCA)
- ADHD (TCA's, SRI)
- Bulimia (not anorexia)
- OCD and impulse syndromes
- Mild geriatric pseudodementia
- Chronic or neuropathic pain (tertiary amine TCA's)
- Tic disorders (possibly including Tourette's)

Less Certain but reported

- Aggression, dyscontrol, agitation (inc. brain damaged)
- Alcohol abuse
- Neurological disorders (migraine, narcolepsy)
- Medical disorders (ulcer, colitis, myositis, dermatitis)
- Premature ejaculation (SSRI's)

- SSRI's first line treatment – Why?
- Each medication trial should be of proper dose and duration (at least 4-8 weeks, if patient can tolerate it) before moving on to next medication trial

Duration of treatment

- Standard practice is 6-12 months past full clinical recovery to avoid relapse; strong evidence for this
- For maintenance, 1-5 years to prevent unipolar recurrences- evidence not as strong as above
- For 3 or more episodes, chronic course of treatment is suggested
- Optimal dosing long term not established yet

- Lithium, Valproic acid (2 main mood stabilisers)
- Carbamazepine
- Newer generation antipsychotics
- Lamotrigine (for depression)

Lithium

Indications

- "gold" standard for bipolar disorder
- Treatment of choice for classic/ euphoric mania
- May need to be augmented with second or third (?) mood stabiliser for people with rapid cycling, mixed mania, or treatment resistance.

Lithium

- Mode of action
 - Still not clear; probably involves sites beyond the receptor- in the 2nd messenger system
 - ? Inhibition of inositol monophosphatase ? G protein modulator
- Adverse Events
 - GI, renal, thyroid, skin, CNS toxicity
 - Need to monitor serum levels, renal and thyroid function

Valproic Acid

- Mode of action
 - Unknown for bipolar disorder
 - Reduces Na influx
 - Changes in the metabolism of the GABA system
 - Inhibits breakdown, decreases turnover, increases GABAb receptor density
 - Enhances neuronal responsiveness to GABA
- Adverse events
 - CNS toxicity, GI, hepatotoxicity, hematologic effects, hair loss, teratogenic.

Carbamazepine

- Mode of action
 - Reduction of high frequency neuronal discharge through binding to and inactivating voltage-sensitive sodium channels and decreasing sodium influx
- Adverse events
 - CNS toxicity, GI and hepatic toxicity, hematologic (aplastic anemia, thrombocytopenia, agranulocytosis), teratogenic.
 - Potential P450 interaction (self induced metabolism)

 Olanzapine, Risperidone, Quetiapine, Clozapine, Aripiprazole, Ziprasidone Amisulpride

- Good antimanic effects
- Some with evidence for treating depression
- Olanzapine has good long term relapse prevention for mania
- Main side effect: sedation and weight gain

- Issue of combined medications
- Treating from above (mania) and below (depression)
- Dealing with phase changes of the illness (depressed phase*, manic phase, mixed state, rapid cycling) as well as maintenance treatment.
- * Most predominant phase

Antipsychotics

- What is psychosis
 - Positive symptoms
 - Hallucinations, delusions, disorganised speech, disorganised thinking
 - Negative symptoms
 - Social withdrawal, apathy, avolition, anhedonia

Overview of neurobiology of psychosis

 Overactivity in the mesolimbic dopamine pathway → positive symptoms

Antipsychotics

Mechanism of action

- Blockade of post synaptic dopamine receptors → less dopaminergic activity
- What's dopamine by the way???
- 4 dopamine tracts affected
 - Mesolimbic → reversal of psychosis
 - Mesocortical \rightarrow cognitive deficits
 - Nigrostriatal → extrapyramidal symptoms
 - Tuberoinfundibular → hyperprolactinemia

DOPAMINE PATHWAYS

mesolimbic overactivity = positive symptoms of psychosis

meso-cortical pathway

Antipsychotics

	First Generation	Second/Third Generation
Positive symptoms	+++	+++
Negative symptoms	0	+?
Mood stabilisation	+	++
Tardive dyskinesia	++	+/0
Weight gain	+	+++/+
Depot IM (long acting)	+	Risperidone/Olanzap ine
Cost	\$	\$\$\$\$
Patient preference	+	++

Receptor binding profiles of antipsychotic agents

Data are derived from different, non-comparative *in vitro* studies Abilify Product Information, 2005; Lawler *et al.*, 1999; Tandon *et al.*, 1999; Scatton *et al.*, 1997

Antipsychotics

Extrapyramidal symptoms

Dystonia, akathisia, parkinsonism

Tardive Dyskinesia
Neuroleptic Malignant Syndrome

Autonomic instability, acute confusion/delirium, leukocytosis, [↑]CPK

Antipsychotics

- Second/Third Generation AP's
 - Clozapine, risperidone, olanzapine, quetiapine, ziprasidone, amisulpride, aripiprazole
- As a class
 - less D2 receptor blockade, less EPS, TD (?)
 - More specific with mesolimbic Dopamine block, sparing the nigrostriatal tract
 - Perhaps better efficacy on negative symptoms
 - Patient preference

Anticholinergics

- Benztropine mesylate, trihexylphenidyl, diphenhydramine
- Counteracts dystonia and EPS
- Can cause anticholinergic signs/ toxicity – "dry syndrome" and cognitive side effects

Anti-anxiety agents

Overview of Neurobiology of anxiety

- GABA-Benzo system dysfunction
 - GABA as major inhibitory neurotransmitter in the brain
- Locus Coeruleus –Noradrenergic system dysfunction
 - Excessive NE activity resulting in peripheral signs of anxiety

– 5HT excess?

GABA RECEPTORS

Anti-Anxiety Medications

- Anxiety disorders
 - Generalised Anxiety Disorder
 - Panic Disorder
 - Social Phobia
 - OCD
 - Post Traumatic Stress Disorder

Anti-anxiety agents

- Types
 - Benzodiazepines and analogues
 - Diazepam, clonazepam, alprazolam, triazolam, zopiclone
 - Antidepressants (still main medication treatment for most anxiety disorders)
 SSRI's, Venlafaxine, TCA's and MAOI's

Anti-anxiety agents Benzodiazepines (BZ)

- Mode of action
 - Increase in GABA (primarily an inhibitory NT)
- Indications
 - Anxiolytic, sedative-hypnotic, alcohol withdrawal, anticonvulsant, muscle relaxant
 - In psychiatry, benzodiazepines are used as adjuncts (not main treatment for anxiety)
- Adverse effects
 - Sedation, abuse/dependence, CNS depression, withdrawal syndrome

Anti-anxiety agents Benzodiazepines

Choice depends on
T ½ (half-life)
+/- active metabolites
Speed of action (PO, IM, SL)
Dependence potential

Anti-anxiety agents Benzodiazepine representatives

drug	Half-life	Half life of metabolites
triazolam	1.5-5hrs	none
clonazepam	18-50 hrs	none
diazepam	20-50 hrs	50-100 hrs

Miscellaneous Agents

- Herbs kava, valerian, SJW, gingko
- Vitamin E
- Melatonin
- Omega fatty acids/ fish oils

Electroconvulsive Treatment

Myths

Mechanism of action

- Seizure is necessary
- Electrical equilibrium
- Stabilizes dysregulated intracellular signaling linked to multiple transmitter systems

Indications

 Severe depressive d/o, immediate suicide risk, major depressive d/o with psychosis, severe mania, treatment resistant schizophrenia, parkinson's, catatonic stupor

Electroconvulsive Treatment

Efficacy

- 30-50 percent chance of response in truly medication resistant depression
- Adverse events
 - Mortality rate of 0.002% per treatment and 0.01% per patient (Kaplan and Sadock 6th ed)
 - Dysrhythmias
 - Confusion
 - Cognitive dysfunction

Light Treatments

Indications

- Depressive disorders with seasonal patterns
- Shift work
- Mechanism of action
 - Light phase advances the delayed circadian rhythm associated with seasonal depression
- Efficacy
- Adverse events
 - Headache, eyestrain, irritability

Transcranial Magnetic Stimulation

- Use of high powered magnets to treat mood and anxiety conditions
- No anesthetics, no seizures
- 20-30 minute outpatient sessions
- Efficacy and role still being studied

Psychosurgery

- History- 1890's to 1930's
- Newer techniques
 - Imaging guided cingulotomies and capsulotomies
- Indications
 - Treatment/ medication resistant depression and OCD
- Efficacy
 - 50-70 % of carefully selected patients w/ significant clinical improvement and minimal SE's
- Adverse events
 - Less than 3% are worse after treatment
 - Hemiplegia in less than 0.3%
 - Epilepsy in less than 1%

• Placebo: Make it work!

 Neurotransmitters=provide clues to how medications work and side effects!!

Medications: What class are you!?!

