The Binary Population and Spectral Synthesis (BPASS) models are a set of stellar evolution and spectral synthesis models that can be used to model a broad range of stellar populations and their properties. This manual gives an overview of the models and the contents of the BPASS v2.1 data release.

See also Eldridge, Stanway et al (2017, PASA in press)
Table of Contents

1 - Introduction 3
2 - BPASS Acknowledgement 4
3 - Outline of BPASS Models and Methods 5
4 - Caveats and Cautions 8
5 - Data Release 9
 - README: Spectral Energy Distributions 10
 - README: Supernova Rate Files 11
 - README: Stellar Type Numbers 12
 - README: Yields 12
 - README: Surviving Stellar Masses 13
 - README: Ionizing Photon Rates 13
 - README: Colours 14
 - README: Hertzsprung-Russell diagram isocontours 14
 - README: Inputs 16
 - README: Stellar Models 16
 - README: New O Star Atmosphere Models 19
6 - Post-Processed Data Products 20
 - CLOUDY and Nebular gas 20
 - Dust Absorption and Re-emission 21
 - Complex Star Formation Histories 22
7 - Key Results and Calibration Tables 24
 - Z-dependent Star Formation Rate Conversion Factors for Hα and FUV 24
 - Maximal relations for BPASS binary starbursts in the BPT diagrams. 25
 - Rest-Ultraviolet Properties of Ongoing Starbursts (Nion, L1500, ξion, βint) 26
 - Z-dependent SN Rates for Constant SFR 27
8 - Auxilliary Software 27
 - CMD plotting code - plot1cmdmake.pro and plot1cmdplot.pro 28
 - Example plotting codes 29
9 - Areas under Development 30
10 - The BPASS Team 31
Thanks 32
1 - Introduction

The Binary Population and Spectral Synthesis (BPASS) suite of binary stellar evolution models and synthetic stellar populations provides a framework for the physically motivated analysis of both the integrated light from distant stellar populations and the detailed properties of those nearby. We present a new version 2.1 data release.

The BPASS code was initially established explicitly to explore the effects of massive star duplicity on the observed spectra arising from young stellar populations, both at Solar and sub-Solar metallicities (Eldridge & Stanway, 2009). In particular it was initially focused on interpreting the spectra of high redshift galaxies, in which stellar population ages of < 100Myr and metallicites a few tenths of Solar dominate the observed properties (Eldridge & Stanway, 2012). It has since been expanded to confront a much broader range of environments and incorporate significantly more complete stellar populations.

We have also endeavored to make the results of the code easily available to all astronomers and astrophysicists who wish to use them. Our philosophy is to present these models on a ‘best-effort’ basis. We do not attempt to fine tune the models but use the best estimates we have to create the single star and binary populations. The model and parameters will only be updated or varied between future versions. We also make clear the caveats and limitations associated with the models. We do not claim infallibility, and would welcome suggestions for improvement, while noting that we cannot promise a rapid response to requests.

The term BPASS can be used interchangeably to refer to the stellar evolution code, the spectral population synthesis code, the resulting models or the collaborative project exploring and exploiting these models. For additional information or ‘on request’ outputs, please contact us at j.eldridge@auckland.ac.nz and e.r.stanway@warwick.ac.uk.

Key BPASS papers include:

- Eldridge, Stanway et al, 2017, PASA in press. (E+17)

Additional papers providing input to BPASS or exploring applications include:

2 - BPASS Acknowledgement

BPASS v2.1 is described in detail in Eldridge, Stanway et al (2017, PASA in press), which also presents a range of validation tests. A copy of the paper (and this manual) can also be found in the README subdirectory of the data release.

We would appreciate the inclusion of the following acknowledgement where appropriate: “This work made use of v2.1 of the Binary Population and Spectral Synthesis (BPASS) models as last described in Eldridge, Stanway et al (2017).”
3 - Outline of BPASS Models and Methods

BPASS is based on a custom stellar evolution model code, first discussed in Eldridge et al. (2008), which was originally based in turn on the long-established Cambridge STARS stellar evolution code (Eggleton, 1971; Pols et al., 1995; Eldridge & Tout, 2004b). The structure, temperature and luminosity of both individual stars and interacting binaries are followed through their evolutionary history, carefully accounting for the effects of mass and angular momentum transfer. The original BPASS prescription for spectral synthesis of stellar populations from individual stellar models was described in Eldridge & Stanway (2009, 2012), while a study of the effect of supernova kicks on runaways stars and supernova populations was described in Eldridge et al. (2011). In the years since this initial work, a large number of additions and modifications have been made to the BPASS model set, resulting in a version 2.0 data release in 2015 which is briefly detailed in Stanway et al. (2016) and Eldridge & Stanway (2016). It has been widely used by the stellar (e.g. Blagorodnova et al., 2017; Wofford et al., 2016) and extragalactic (e.g. Ma et al., 2016; Steidel et al., 2016) communities but was not formally described until the v2.1 data release paper of Eldridge, Stanway et al (2017, hereafter E+17).

The more important new features and results included in this release of BPASS include: calculation of a significantly larger number of stellar models, release of a wider variety of predictions of stellar populations, inclusion of new stellar atmosphere models, a wider range of metallicities, binary models are now included for the full stellar mass range and a broader range of compact remnant masses are now calculated in secondary models.

Generation of the BPASS models can be broadly divided into three main stages, each with associated outputs:
Some of the input terms (e.g. relative elemental abundance ratios, opacities, mixing, mass transfer prescriptions, kicks etc) are fixed in the stellar evolution code and discussed in the data release paper. All models use a fixed, abundance ratio prescription based on solar abundances.

The key variable parameters considered in the model set are given in the following table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Permitted Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Masses</td>
<td>68 values from $M_1 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.3, 2.5, 2.7, 3, 3.2, 3.5, 3.7, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 50, 60, 70, 80, 100, 120, 150, 200 and 300 M_\odot.</td>
</tr>
<tr>
<td>Primary Mass Ratios</td>
<td>9 values with $M_2 / M_1 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9$</td>
</tr>
<tr>
<td>Secondary Masses</td>
<td>46 values from $M_2 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 50, 60, 70, 80, 100, 120, 150, 200, 300, 400 and 500 M_\odot.</td>
</tr>
<tr>
<td>Compact remnant masses</td>
<td>31 values from $\log(M_{\text{rem},1}/M_\odot) = -1, -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 and 2.</td>
</tr>
<tr>
<td>Period Distribution</td>
<td>21 initial periods from $\log(P/\text{days}) = 0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4, 2.6, 2.8, 3, 3.2, 3.4, 3.6, 3.8, 4.0$</td>
</tr>
<tr>
<td>Stellar Ages</td>
<td>Output ages from $\log(\text{Age}/\text{yrs}) = 6.0$ to 11.0 (1 Myr to 100 Gyr)</td>
</tr>
<tr>
<td>Metallicity Mass Fractions</td>
<td>$Z = 10^{-5}, 10^{-4}, 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.008, 0.010, 0.014, 0.020 (Z_\odot), 0.030, 0.040$</td>
</tr>
<tr>
<td>Initial Mass Functions</td>
<td>8 different mass functions - default version: Kroupa IMF with $M_{\text{max}} = 300 M_\odot$</td>
</tr>
<tr>
<td>Stellar Atmospheres</td>
<td>BASELrv3.1 ($\log q = -1$ to 5.5, $\log(T/K) = 2000$ to 50000 and $\log(Z/Z_\odot) = -3$ to 0.5. For metallicities below this minimum we use v2.2 that extends to $\log(Z/Z_\odot) = -3.5$.)</td>
</tr>
<tr>
<td></td>
<td>PoWR (We use the SMC and LMC, WN grids with $X_{\text{surface}} = 0.4, 0.2$ and 0. For the Galaxy we use the WN grids with $X_{\text{surface}} = 0.5, 0.2$ and 0. At all metallicities we use the Galactic WC grid.)</td>
</tr>
<tr>
<td></td>
<td>WMBASIC (new model grid for O stars, see section 2.3.2 and Table 2)</td>
</tr>
</tbody>
</table>

(Note: see E+17 for detailed explanation of terms and section reference in above table.)

For the binary population synthesis, we assume a flat distribution in initial mass ratio and log(period) in all our models. The result of this is that while all of our stars are technically part of a binary population, in many cases the stars evolve as isolated individuals and are never close enough to interact. The distribution is designed to match that in the local Universe and results in ~70% of massive stars interacting during their lifetimes (see E+17, figure 1).

If a lower binary fraction is required, we also provide single star populations that can be mixed in proportion to reduce the overall fraction.
The seven IMFs calculated as part of our model set are defined by broken power laws as follows:

\[N(M < M_{\text{max}}) \propto \int_{0.1}^{M_{\text{max}}} \left(\frac{M}{M_\odot} \right)^{\alpha_1} dm
+ 0.5 \int_{0.5}^{M_{\text{max}}} \left(\frac{M}{M_\odot} \right)^{\alpha_2} dm \]

Where

<table>
<thead>
<tr>
<th>Model</th>
<th>(\alpha_1) (0.1-0.5 M(_\odot))</th>
<th>(\alpha_2) (0.5 M(\odot) - M({\text{max}}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1.30</td>
<td>-2.00, M({\text{max}})=100 M(\odot)</td>
</tr>
<tr>
<td>2</td>
<td>-1.30</td>
<td>-2.00, M({\text{max}})=300 M(\odot)</td>
</tr>
<tr>
<td>3</td>
<td>-1.30</td>
<td>-2.35, M({\text{max}})=100 M(\odot)</td>
</tr>
<tr>
<td>4</td>
<td>-1.30</td>
<td>-2.35, M({\text{max}})=300 M(\odot)</td>
</tr>
<tr>
<td>5</td>
<td>-2.35</td>
<td>-2.35, M({\text{max}})=100 M(\odot)</td>
</tr>
<tr>
<td>6</td>
<td>-1.30</td>
<td>-2.70, M({\text{max}})=100 M(\odot)</td>
</tr>
<tr>
<td>7</td>
<td>-1.30</td>
<td>-2.70, M({\text{max}})=300 M(\odot)</td>
</tr>
</tbody>
</table>

(see table 1, Stanway, Eldridge & Becker 2016)

Of these, our recommended default IMFs are numbers 3 and 4 (with upper mass limits of 100 Msun and 300 Msun respectively). Results in E+17 and section 7 are based on IMF 4 unless otherwise specified. In our data release, model data directories are labelled as “BPASSv2.1_imfxxx_yyy” where “xxx” is given by the upper slope and yyy by the upper limit on the stellar mass.

The Salpeter (1955) IMF is reproduced by IMF number 5. It is labelled with “imf135all_100”

Where results are scaled by Solar metallicity, we assume Zsun=0.020.

Where results are given in Solar luminosities, we assume Lsun=3.848 x 10^{26} J/s.
4 - Caveats and Cautions

Caveats and cautions regarding the use of BPASS v2.1 are extensively discussed in E+17.

We highlight two key points:

We do not recommend BPASS v2.1 for fitting old stellar populations (>> 1 Gyr)

We do not recommend use of our preliminary Type Ia supernova rate estimates.

These recommendations arise from key uncertainties in the models, in particular that we have not perfected our inclusion of AGB evolution in the models, and are likely not dealing well with the core-helium flash in our binary models. We also overestimate the rejuvenation of secondary stars due to mass-transfer in stars where the primary ends its evolution as a white dwarf. This is primarily due to us having focused on the younger massive stellar populations rather than the older, low mass stars; this will be addressed in a future version.

In brief, uncertainties within our models affect the following areas:

Rotational mixing - both in isolated stars and as a result of spin up by mass transfer.

Common envelope evolution - we use a relatively simple CEE prescription which may substantially impact the production of compact remnants (WDs, NSs).

Composition - studies of individual spectral features may be affected by varying abundance ratios (e.g. α-enhancement).

Wolf-Rayet star inflation - an improved prescription may lower stellar temperatures.

Neutron star and binary kicks - the distribution of kick velocities will have implications for type Ia SNe and compact object merger GW event rates.

Binary distribution parameters - our v2.1 models appear to overestimate the fraction of low mass stars in interacting binaries, resulting in issues at late ages. This will be addressed in a future version.

We also caution that BPASS is concerned solely with the stellar component in systems, and generates simple (i.e. single-aged) stellar populations (SSPs). Treatment of nebular gas, dust or non-thermal components, or of complex star formation histories, in comparison to observed sources requires post-processing of the data release products.
5 - Data Release

The BPASS v2.1 data release comprises the following primary data products:

1. Stellar Model Outputs:
 (a) Binary stellar models with photometric colours
 (b) New OB stars atmosphere models

2. Stellar Population Outputs (all versus age):
 (a) Massive star type number counts
 (b) Core collapse supernova rates
 (c) Yields, energy output from winds and supernovae and ejected yields of X, Y and Z
 (d) Stellar population mass remaining
 (e) HR diagram (isochronal contours)

3. Spectral Synthesis Outputs (all versus age):
 (a) Spectral Energy Distributions
 (b) Ionizing flux predictions
 (c) Broadband colours
 (d) Colour-Magnitude Diagram (CMD) making code

4. Available on request due to unverified status:
 (a) Approximate accretion luminosities from X-ray binaries
 (b) A limited set of nebula emission models

All outputs of the current BPASS v2.1 data release can be found at http://bpass.auckland.ac.nz, and are mirrored at http://warwick.ac.uk/bpass.

They are also online at the PASA datastore (Link to follow) and the direct link to the Google Drive location is https://drive.google.com/open?id=0B7vqPPPgOdtldjdyV3JwODZ3TIU.

For additional information or ‘on request’ outputs, please contact us at j.eldridge@auckland.ac.nz and e.r.stanway@warwick.ac.uk

Files are sorted into directories by IMF, such that the directory BPASSv2.1_imf135_300 contains results for our favoured v2.1 models with an upper IMF slope of -1.35 and an upper mass limit of 300 Msun. More generally, directories are labelled as “BPASSv2.1_imfxxx_yyy” where “xxx” is given by the upper slope and “yyy” by the upper stellar mass limit.
Each file gives results for a simple stellar population (i.e. instantaneous starburst) which initially formed 10^6 Msun of stars, at ages from log(age/years)=6.0 to log(age/years)=11 in 0.1 dex increments. The period of each time bin can be calculated as
$$dt = 10^{(log(age)+0.05)-10^{(log(age)-0.05)}} \text{ years},$$
except for the first bin which is $10^{6.05}$ years. We do not provide complex star formation histories, but these can be straightforwardly constructed (see Post-Processed Data Products below).

In each case the files are written to disk with a format “(n(E16.7))” where n is the number of columns, unless otherwise specified.

Values given as logarithms are in base 10, unless otherwise specified.

In most cases, a data file is provided for model outputs as a function of age at each metallicity, and separately for single and binary populations.

<z> in file names denotes stellar metallicity mass fraction and can be “zem5”, “zem4”, “z001”, “z002”, “z003”, “z004”, “z006”, “z008”, “z010”, “z020”, “z030” or “z040”, where “zem5” implies Z=1.0E-5 and “z020” implies Z = 0.020 etc.

Where results are scaled by Solar metallicity, we assume Zsun = “z020” = 0.020.

Where results are given in Solar luminosities, we assume Lsun=3.848 x 10^{36} J/s.

In the following pages, we provide README files for each data product.

README: Spectral Energy Distributions

These files contain the primary output of BPASS, which is the stellar spectral energy distribution (SED). Flux values are given every 1 Angstrom in the range 1 - 100,000 A. Most users will wish to resample to lower resolution, depending on their use case. We caution that some of the stellar atmospheres we use also have slightly lower spectral resolution.

Each file has 52 columns and 10^6 rows. The first column lists a wavelength in angstroms, and each remaining column n (n>1) holds the model flux for the population at an age of $10^{(6+0.1*(n-2))}$ years at that wavelength.
The units of flux are Solar Luminosities per Angstrom, normalised for a cluster of 1e6 Msun formed in a single instantaneous burst. The total luminosity of the SED can be simply calculated by summing all the rows together. Or the flux over the wavelength range from, for example, 2000 to 3000 Angstroms can be calculated by summing the 2000th to 3000th rows.

Filenames: spectra.<z>.dat (single stars), spectra-bin.<z>.dat (binaries)

README: Supernova Rate Files

These files contain information regarding supernova rates. The numbers in the columns give the number of supernovae in each time bin, arising from a 10^6 Msun instantaneous burst of stars at t=0. For use when converting these numbers to rates we include the width of each time bin in the final column.

The estimated GRB rate is isotropic (i.e. not corrected for beaming angle) and assumes only pathways involving spin up by mass accretion and rotationally-mixed, chemically homogenous evolution (see E+17 for details). Other pathways may not be accounted for.

Where no number is provided, these events are sufficiently rare not to be represented in our standard synthesis models. Since these estimates are based on a finite number of stellar models we also include estimates of the uncertainty in the number of each supernova type in the later columns.

Column1 - log(age/ yrs)
Column 2 - number of type Ia supernovae in bin
Column 3 - number of type IIP supernovae
Column 4 - number of type II-other supernovae
Column 5 - number of type Ib supernovae
Column 6 - number of type Ic supernovae
Column 7 - number of long-GRB supernovae - jet angle not accounted for
Column 8 - number of pair-instability supernovae
Column 9 - number of low-mass supernovae (final mass <2Msun).
Columns 10-17 poisson errors for above supernova numbers
Columns 18 - length of bin in years, for working out rates

Filenames: supernova.<z>.dat (single stars), supernova-bin.<z>.dat (binaries)
README: Stellar Type Numbers

These files contain the numbers of stars of a given spectral type (where these are selected based on the physical properties as described in E+17, table 3), in a stellar population at a given age, assuming 10^6 Msun in stars were formed at t=0. They give the total number of stars of each type expected at each age.

Each file has 51 rows (one for each age bin) and 21 columns. The first column holds the log(age/years) of the population while remaining columns hold the numbers by subtype in two luminosity bins as follows (column - type):

<table>
<thead>
<tr>
<th>Luminosity>4.9</th>
<th>Luminosity<4.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 - O</td>
<td>12 - O</td>
</tr>
<tr>
<td>3 - Of</td>
<td>13 - Of</td>
</tr>
<tr>
<td>4 - B</td>
<td>14 - B</td>
</tr>
<tr>
<td>5 - A</td>
<td>15 - A</td>
</tr>
<tr>
<td>6 - YSG</td>
<td>16 - YSG</td>
</tr>
<tr>
<td>7 - K</td>
<td>17 - K</td>
</tr>
<tr>
<td>8 - M</td>
<td>18 - M</td>
</tr>
<tr>
<td>9 - WNH</td>
<td>19 - WNH</td>
</tr>
<tr>
<td>10 - WN</td>
<td>20 - WN</td>
</tr>
<tr>
<td>11- WC</td>
<td>21- WC</td>
</tr>
</tbody>
</table>

Filenames: numbers.<z>.dat (single stars), numbers-bin.<z>.dat (binaries)

README: Yields

These files contain the total yield of hydrogen, helium and metals in supernova ejecta and stellar winds as a function of age, for a population of 10^6 Msun formed at t=0.

Each file has has 51 rows (one for each age bin) and 9 columns. The first column holds the log(age/years) of the population while remaining columns hold:

Stellar Winds:
Col 2 - hydrogen mass output in Msun/yr
Col 3 - helium mass output in Msun/yr
Col 4 - metal mass output in Msun/yr
Col 5 - stellar wind energy output in Msun m2 s2 /yr (multiply by 2x1030 kg and get J/yr).
Supernovae:
Col 6 - supernova energy output in J/yr, assuming 10^{51} ergs per supernova.
Col 7 - hydrogen mass output in Msun/yr
Col 8 - helium mass output in Msun/yr
Col 9 - metals mass output in Msun/yr

Filenames: yields.<z>.dat (single stars), yields-bin.<z>.dat (binaries)

README: Surviving Stellar Masses

These files contain the total mass of the surviving stellar population as a function of age, for a population of 10^6 Msun formed at t=0. These do not include the mass in compact remnants.

Each file has 51 rows (one for each age bin) and 2 columns. The first column holds the log(age/years) of the population while the second holds the total mass of surviving stars in solar masses.

For the binary files we have included a third, untested, column that includes the mass in stellar remnants, i.e. white dwarfs, neutron stars and black holes. We will add this column to the single star population in future.

Filenames: starmass.<z>.dat (single stars), starmass-bin.<z>.dat (binaries)

README: Ionizing Photon Rates

These files contain quantities relating to the ionizing flux from the stellar population as a function of age, for a population of 10^6 Msun formed at t=0.

Each file has has 51 rows (one for each age bin) and 5 columns. The first column holds the log(age/years) of the population while the remainder are as follows:

2 - log(Nion per second) - ionizing photon production rate
3 - log (L_Halpha in ergs/s) - Balmer Hα line luminosity, assuming =log(Nion/s)-11.87.
4 - log (L_FUV in ergs/s/A) - luminosity in the FUV band (mean flux from 1556 to 1576A).
5 - log (L_NUV in ergs/s/A) - luminosity in the NUV band (mean flux from 2257 to 2277A).

Filenames: ionizing.<z>.dat (single stars), ionizing-bin.<z>.dat (binaries)
README: Colours

These files contain the absolute magnitudes predicted for stellar populations as a function of age, for a population of 10^6 Msun formed at t=0, calculated using convolution of the SED with standard filter profiles.

Each file has has 51 rows (one for each age bin) and 22 columns. The first column holds the log(age/years) of the population while the remainder are colours (column 2 only) and absolute magnitudes in different filters as follows:

<table>
<thead>
<tr>
<th>2</th>
<th>V-I</th>
<th>9</th>
<th>H</th>
<th>16</th>
<th>f300w</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>U</td>
<td>10</td>
<td>K</td>
<td>17</td>
<td>f336w</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>11</td>
<td>u</td>
<td>18</td>
<td>f435w</td>
</tr>
<tr>
<td>5</td>
<td>V</td>
<td>12</td>
<td>g</td>
<td>19</td>
<td>f450w</td>
</tr>
<tr>
<td>6</td>
<td>R</td>
<td>13</td>
<td>r</td>
<td>20</td>
<td>f555w</td>
</tr>
<tr>
<td>7</td>
<td>I</td>
<td>14</td>
<td>i</td>
<td>21</td>
<td>f606w</td>
</tr>
<tr>
<td>8</td>
<td>J</td>
<td>15</td>
<td>z</td>
<td>22</td>
<td>f814w</td>
</tr>
</tbody>
</table>

Where U, B, V, R, I are drawn from the standard Johnson-Cousins filter set; J, H and K are the Mauna Kea/2MASS survey profiles; u, g, r, i, z are the SDSS filter set; and F300W, F336W, F450W, F555W, F606W and F814W are the HST/WFPC2 broadband filter set. F435W is in the HST/ACS broadband filter set. All magnitudes are given in the Vega system.

Filenames: colours.<z>.dat (single stars), colours-bin.<z>.dat (binaries)

README: Hertzsprung-Russell diagram isocontours

These files contain information on theoretical Hertzsprung-Russell diagram isocontours in luminosity, temperature, surface gravity and gravity weighted flux (T^4/g, hereafter TG or L/M) for a population of 10^6 stars, formed at t=0, and allowed to evolve over time.

Note: These are large files (~70MB each).

Each file contains a series of 100 row x 100 column grids, ordered by time and hydrogen abundance. Each grid value contains the probability of the grid point being occupied by stars at that time.

The first grid (i.e. the first 100 rows) represents a probability map in log T (rows) vs log L (columns) at log(age)=6.0 years for stars with a surface hydrogen abundance X > 0.4.
The next fifty grids (i.e rows 101 to 5100) each repeat this while incrementing the age by log(age)=0.1 per grid

Grids 52-102 (rows 5101-10200) are in log T vs log L, incrementing through the 51 age bins, but for stars with a surface hydrogen abundance 0.4 > X > 1e-3

Grids 103-153 (rows 10201-15300) are in log T vs log L, incrementing through the 51 age bins, but for stars with a surface hydrogen abundance X < 1e-3

This sequence is then repeated for grids of probability density in log T (rows) vs log G (columns) - grids 154-306.

And the sequence is repeated again for log T (rows) vs log TG (columns) - grids 307-459

i.e.:

<table>
<thead>
<tr>
<th>Grid (n)</th>
<th>Row Parameter</th>
<th>Column Parameter</th>
<th>Hydrogen Abundance</th>
<th>i</th>
<th>Log Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-51</td>
<td>Log T</td>
<td>Log L</td>
<td>X>0.4</td>
<td>n - 1</td>
<td>6.0+0.1*i</td>
</tr>
<tr>
<td>52-102</td>
<td>Log T</td>
<td>Log L</td>
<td>0.4 > X > 1e-3</td>
<td>n - 52</td>
<td>6.0+0.1*i</td>
</tr>
<tr>
<td>103-153</td>
<td>Log T</td>
<td>Log L</td>
<td>X < 1e-3</td>
<td>n - 103</td>
<td>6.0+0.1*i</td>
</tr>
<tr>
<td>154-204</td>
<td>Log T</td>
<td>Log G</td>
<td>X>0.4</td>
<td>n - 154</td>
<td>6.0+0.1*i</td>
</tr>
<tr>
<td>205-255</td>
<td>Log T</td>
<td>Log G</td>
<td>0.4 > X > 1e-3</td>
<td>n - 205</td>
<td>6.0+0.1*i</td>
</tr>
<tr>
<td>256-306</td>
<td>Log T</td>
<td>Log G</td>
<td>X < 1e-3</td>
<td>n - 256</td>
<td>6.0+0.1*i</td>
</tr>
<tr>
<td>307-357</td>
<td>Log T</td>
<td>Log TG</td>
<td>X>0.4</td>
<td>n - 307</td>
<td>6.0+0.1*i</td>
</tr>
<tr>
<td>358-408</td>
<td>Log T</td>
<td>Log TG</td>
<td>0.4 > X > 1e-3</td>
<td>n - 358</td>
<td>6.0+0.1*i</td>
</tr>
<tr>
<td>409-459</td>
<td>Log T</td>
<td>Log TG</td>
<td>X < 1e-3</td>
<td>n - 409</td>
<td>6.0+0.1*i</td>
</tr>
</tbody>
</table>

For each grid, the row and column parameters are gridded as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Increment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log T</td>
<td>0.1</td>
<td>10.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Log L</td>
<td>-2.9</td>
<td>7.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Log G</td>
<td>-2.9</td>
<td>7.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Log TG</td>
<td>-2.9</td>
<td>7.0</td>
<td>0.1</td>
</tr>
</tbody>
</table>
An example IDL plotting code for these files is provided in the *Auxiliary Software* section below.

Filenames: hrs.<z>.dat (single stars), hrs-bin.<z>.dat (binaries)

README: Inputs

Input files for the BPASS population synthesis code are not expected to be user-readable, and are included in the data release directories for archiving purposes. They are also required to generate colour-magnitude diagrams for the populations, using the code we supply.

Row 1 contains the IMF conversion factor to calculate exact number of systems for 1e6 Msun of stars.

Each following row gives file-name, model type, and if required model parameters. See section on *Auxiliary Software* for further details

Filenames: input_bpass_<z>

README: Stellar Models

Also included in the distribution are the outputs of our 1D stellar evolution code. These comprise a large library of >100,000 individual stellar models, both for single stars and incorporating the effects of binary evolution. For binaries, we produce both a primary model and a secondary model.

The models are stored in directory BPASSv2.1_stellar_models. Within the data release directory, the single star models can be found in file NEWSINMODS.tar and the binary models in NEWBINMODS.<z>.tar.

Warning: These files are large (~500 MB).

They will unpack into a directory structure below the working directory, which separates primary star models from secondary star models and by metallicity.

Filenames: sneplot-<z>-M1-q-logP

where, <z> is the metallicity, M1 is the initial mass of the primary star in solar masses, q is M2/M1 (the initial mass of secondary over the initial mass of primary) and logP is the log of the initial orbital period of the binary in days.
The most useful parameters are:
- columns 1-16, parameters of the primary star
- columns 35-38 parameters of the binary
- columns 47-49 parameters of the companion (if undefined no companion or not visible)
- columns 54-73 total magnitudes for binary
- columns 74-93 magnitudes for companion (if undefined no companion or not visible)

Column Number - Variable

1 - Model timestep number
2 - Age/yrs
3 - Log10(R1/Rsun) - radius of star 1
4 - Log10(T_1eff/K) - effective temperature of star 1
5 - Log10(L1/Lsun) - luminosity of star 1
6 - Total Mass, M1/Msun - mass of star 1 (use this value not column 37).
7 - (He core mass of star 1)/Msun
8 - (CO core mass of star 1)/Msun
9 - (ONe core mass of star 1)/Msun
10 - Empty column
11 - Surface mass fractions for X
12 - Surface mass fractions for Y
13 - Surface mass fractions for C
14 - Surface mass fractions for N
15 - Surface mass fractions for O
16 - Surface mass fractions for Ne
17 - (Mass of Hydrogen in star 1)/Msun
18 - (Mass of Helium in star 1)/Msun
19 - (Mass of Carbon in star 1)/Msun
20 - (Mass of Nitrogen in star 1)/Msun
21 - (Mass of Oxygen in star 1)/Msun
22 - (Mass of Neon in star 1)/Msun
23 - (Mass of Magnesium in star 1)/Msun
24 - (Mass of Silicon in star 1)/Msun
25 - (Mass of Iron in star 1)/Msun
26 - Envelope Binding Energy / Joules
27 - Total Star binding energy / Joules
28 - M(Remnant)/Msun for weak-SNe (1e43J)
29 - M(Ejecta mass)/Msun for weak-SNe (1e43J)
30 - M(Remnant)/Msun for SNe (1e44J)
31 - M(Ejecta mass)/Msun for SNe (1e44J)
32 - M(Remnant)/Msun for super-SNe (1e45J)
33 - M(Ejecta mass)/Msun for super-SNe (1e45J)
34 - Angular momentum of binary
35 - Period of binary in years
36 - log\((\text{Separation of binary}/\text{Rsun})\)
37 - Mass of star 1, M1/Msun - use column 6
38 - Mass of star 2, M2/Msun
39 - Total mass of binary, M\text{TOTAL}/\text{Msun}
40 - DM1W - wind mass loss rate of star 1 (Msun/(1.989\ s))
41 - DMW2 - wind mass loss rate of star 2 (Msun/(1.989\ s))
42 - DM1A - accretion of mass (Msun/(1.989\ s))
43 - DM2A - accretion of mass (Msun/(1.989\ s))
44 - DM1R - Roche Lobe Overflow of star 1 (Msun/(1.989\ s))
45 - DM2R - Roche Lobe Overflow of star 2 (Msun/(1.989\ s))
46 - DANGJJ - Change of angular momentum
47 - DLog10(R2/\text{Rsun}) - estimated radius of star 2
48 - DLog10(T2/K) - estimated effective temperature of star 2
49 - DLog10(L2/Lsun) - estimated luminosity of star 2
50 - Roche lobe overflux of star 2
51 - modelimf - total IMF probability of stars (assuming Kroupa IMF)
52 - mixedimf - IMF probability of rejuvenated stars

Following are for total absolute magnitudes and colours of both stars in binary:

<table>
<thead>
<tr>
<th>Filter</th>
<th>Magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-I</td>
<td>60 - H</td>
</tr>
<tr>
<td>U</td>
<td>61 - K</td>
</tr>
<tr>
<td>B</td>
<td>62 - u</td>
</tr>
<tr>
<td>V</td>
<td>63 - g</td>
</tr>
<tr>
<td>R</td>
<td>64 - r</td>
</tr>
<tr>
<td>I</td>
<td>65 - i</td>
</tr>
<tr>
<td>J</td>
<td>66 - z</td>
</tr>
<tr>
<td>H</td>
<td>67 - f300w</td>
</tr>
<tr>
<td>U</td>
<td>68 - f336w</td>
</tr>
<tr>
<td>B</td>
<td>69 - f435w</td>
</tr>
<tr>
<td>V</td>
<td>70 - f450w</td>
</tr>
<tr>
<td>R</td>
<td>71 - f555w</td>
</tr>
<tr>
<td>I</td>
<td>72 - f606w</td>
</tr>
<tr>
<td>J</td>
<td>73 - f814w</td>
</tr>
</tbody>
</table>

Following are for the absolute magnitudes of the secondary star in the binary alone:

<table>
<thead>
<tr>
<th>Filter</th>
<th>Magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>81 - K</td>
</tr>
<tr>
<td>B</td>
<td>82 - u</td>
</tr>
<tr>
<td>V</td>
<td>83 - g</td>
</tr>
<tr>
<td>R</td>
<td>84 - r</td>
</tr>
<tr>
<td>I</td>
<td>85 - i</td>
</tr>
<tr>
<td>J</td>
<td>86 - z</td>
</tr>
<tr>
<td>H</td>
<td>87 - f300w</td>
</tr>
<tr>
<td>U</td>
<td>88 - f336w</td>
</tr>
<tr>
<td>B</td>
<td>89 - f435w</td>
</tr>
<tr>
<td>V</td>
<td>90 - f450w</td>
</tr>
<tr>
<td>R</td>
<td>91 - f555w</td>
</tr>
<tr>
<td>I</td>
<td>92 - f606w</td>
</tr>
<tr>
<td>J</td>
<td>93 - f814w</td>
</tr>
</tbody>
</table>

Filters are as described under ‘colours’ above. All magnitudes are in the Vega system.
README: New O Star Atmosphere Models

In the directory WMBasic_OB_atmosphere_models, we provide access to those stellar atmospheres which are used in BPASS spectral synthesis and not publically available elsewhere.

Our input grid of WM-Basic atmosphere models, calculated specifically for inclusion in BPASS, are described in E+17. Here we do not provide the rebinned versions included in BPASS but the direct output from WM-Basic. Each file has two columns which are wavelength and flux (the 3rd and 4th columns are for continuum subtractions).

The file names are of the form:
```
x_x_yyyZ_zz.zzkK.dat
```

Where:
1) `xx` = sg (supergiant), dw (dwarf) or hg (high gravity).
2) `yyyy` = is the metallicity mass fraction as in the standard BPASS grid.
3) `zz.zz` = the effective temperature in kK.

The temperature grid for “dw” and “hg” models (surface gravities of log (g) = 4.0 and 4.5 respectively) is: 50.0, 45.7, 42.6, 40.0, 37.2, 34.6, 32.3, 30.2, 28.1, 26.3, 25.0.

For the “sg” models the gravities and surface temperatures are:
log(g) = 3.88,3.73,3.67,3.51,3.40,3.29,3.23,3.14,3.08,2.99,2.95.
T/kK = 51.4, 45.7, 42.6, 40.0, 37.2, 34.6, 32.3, 30.2, 28.1, 26.3, 25.0.
6 - Post-Processed Data Products

CLOUDY and Nebular gas

BPASS produces stellar continuum emission. We caution that, in astrophysical contexts, this is reprocessed by dust and nebular gas before detection, and that our models should be similarly processed. The main consequences of nebular gas interaction is a reduction in the rest-frame ultraviolet and ionizing photon flux from a stellar population, and its reemission as both a nebular continuum component and strong optical and infrared emission lines. Both nebular and line emission are important for interpretation of observed quantities such as spectral slope and line equivalent widths.

We recommend the use of a radiative transfer code such as CLOUDY or MAPPINGS to post-process BPASS SSP models.

We have been wary of providing a processed data set, since there is considerable uncertainty on the physical range of nebular gas parameters in any given environment, and it is important to distinguish between uncertainties in the stellar models and those in their later reprocessing.

In published work (e.g. Stanway et al 2014 and our earlier work on BPASS v1.1) we have used CLOUDY v13.03 and defined a default set of nebular gas parameters as follows:

- gas metallicity and abundance pattern matches stellar metallicity,
- log(electron density)=2,
- covering fraction=1,
- spherical geometry with inner radius=10 pc.

These are broadly consistent with typical HII regions in the local Universe. Users should also consider reasonable dissipation times for nebular gas in young stellar clusters (i.e. up to which ages should the models be reprocessed) and potential impacts of the diffuse interstellar medium. These are use-case specific.

In Xiao et al (2017, submitted) we explore a wider range of nebular gas parameters and their effects on the Baldwin, Philipp & Terlevich (BPT) excitation diagrams, including defining maximal starburst (or photoionization limit) lines for the BPASS v2.1 binary populations as a function of metallicity.

Note that it is also possible to vary gas phase abundance ratios relative to that in the stellar population, which may be important (and even required in, for example, α-enhanced populations).
While we do not provide a nebular gas processed data set, we can offer advice on your own implementation of CLOUDY (although we don’t claim to be experts on radiative transfer or CLOUDY itself), or collaboration on more complex projects.

Getting BPASS into CLOUDY:

CLOUDY can accept input irradiation spectra through use of the “interpolate” command. Using this method, any spectrum (including BPASS SED outputs) can be processed by including the following lines in the CLOUDY input parameter file:

```plaintext
interpolate{ nu_0  flux_0}
continue{nu_1  flux_1}{nu_2  flux_2}{nu_3  flux_3} . . . {nu_10  flux_10}
     . . .
continue{nu_n-9  flux_n-9}{nu_n-8  flux_n-8}{nu_n-7  flux_n-7} . . .{nu_n  flux_n}
```

where nu _i and flux _i are frequency/luminosity pairs drawn from the irradiating SED at sufficient resolution to capture the behaviour of the input spectrum. Note that, since the spectrum is normalised by CLOUDY, the bolometric luminosity of the input spectrum must also be provided (with the luminosity command).

In the most recent data release of CLOUDY (c17.00), Ferland and collaborators have included our BPASS v2.0 models as an pre-installed set of stellar atmospheres available for calling in the code. We hope to see these updated to v2.1 in the near future.

We refer users to CLOUDY documentation (at nublado.org and in the associated Hazy manuals) for full details.

Dust Absorption and Re-emission

In addition to processing by nebular gas, the light from astronomical sources is often processed by dust grains in the circumstellar or interstellar medium. This has three main effects: in the rest-frame optical and ultraviolet flux is lost from the line of sight, reddening the spectrum; in the rest-frame infrared and submillimetre, this flux is reemitted as thermal blackbody emission from dust grains or through excitation of polyaromatic hydrocarbons; in nebular regions, dust can interact with nebular gas and deplete certain elemental species. Dust effects are not implemented in the BPASS stellar population and SED models.

Dealing with dust effects on nebular emission is challenging and should be considered in the context of CLOUDY or other radiative transfer models.
Dust extinction is characterised by a wavelength-dependent dust opacity curve, $k(\lambda)$, such that

$$f_{\text{obs}}(\lambda) = f_{\text{int}}(\lambda)10^{-0.4A_\lambda} \text{ and } A_\lambda = k(\lambda)E(B-V) = \frac{k(\lambda)A_V}{R_V}$$

Here, $k(\lambda)$ and R_V define the extinction law (which varies with metallicity and environment), and A_V or $E(B-V)$ determine the strength of the dust extinction.

We recommend that users investigate the appropriate dust extinction prescription for their environment and modify the BPASS data release SSP SEDs by a dust curve as appropriate.

Users working with data at wavelengths >3 microns (rest) will likely also need to consider dust in emission. We recommend the use of an energy-balance prescription which reprocesses the total absorbed energy from the best fit extinction curve as a series of blackbody and PAH emission components (see da Cunha et al 2008). This is the approach taken by the MAGPHYS galaxy SED code.

Note that BPASS does not provide dust-processed models and is not itself an SED-fitting code, but can be incorporated in existing codes. Again, we can discuss implementation with interested users.

Complex Star Formation Histories

Complex or composite (i.e. non-co-eval) stellar populations are not provided as a part of our standard release but can be constructed by assuming a star formation history and combining models of different ages in the correct proportion to reconstruct a mixed-age population.

The simplest case is a population forming stars continuously at a constant rate.

Here the only potential difficulty lies in dealing with logarithmically spaced time intervals in the models since the total number or fraction of stars to be added to the composite spectrum depends on the width of the interval. Stars contributing to the flux, stellar type numbers or rates in the first BPASS time bin (at $\log(\text{age/years})=6.0$) include all members of the population up to $\log(\text{age})=6.05$ (i.e. $\Delta t_0 = 10^{6.05}$), the second bin includes stars in the range $\log(\text{age})=6.05$ to 6.15 years and so forth (i.e. $\Delta t_i = 10^{6.15+0.1i} - 10^{6.05+0.1i}$ for $i > 0$).
Thus

\[F(\lambda) = f_0(\lambda) \Delta t_0 + \sum_{i=1}^{\max} f_i(\lambda) \Delta t_i \]

Where \(F(\lambda) \) is the flux of the composite population, \(f_i \) is the flux of simple stellar population in age bins, \(i \), and the upper limit “max” is the time bin corresponding to the observed age of the composite population after the initial onset of star formation.

For other complex star formation histories, a similar prescription can be adopted, while noting that care must be taken not to confuse the age of a stellar population in a time bin with the ‘age’ of the composite stellar population since the onset of star formation:

\[F(\lambda) = \Psi_0 f_0(\lambda) \Delta t_0 + \sum_{i=1}^{\max} \Psi_i f_i(\lambda) \Delta t_i \]

where \(\Psi_i \) is the star formation rate (per year) that was experienced by stars which formed in the population at a time before present (or observation, i.e. \(i=\max \)) corresponding to the age of stars in bin \(i \).
7 - Key Results and Calibration Tables

For ease of reference, we provide here a few tables and results drawn from recent papers which are likely to be more generally useful. These results assume our default, broken power law IMF with an upper slope of -1.35 and $M_{\text{max}} = 300$ Msun.

Please reference the original papers if using these numbers.

Z-dependent Star Formation Rate Conversion Factors for Hα and FUV

Ref: Eldridge, Stanway et al (2017, E+17)

Since the ionizing flux arising from a stellar population is strongly metallicity dependent, we derive a set of metallicity-dependent star formation rate conversion factors for two key observables: the Hα emission line, and the rest-frame 1500Å luminosity. These are for a population forming stars at a constant rate, and which has been doing so for long enough for the flux to stabilise (typically ~ 100 Myrs).

The table below provides values $C(Z)$ such that:

$$\log(\dot{M}/M_\odot \text{ yr}^{-1}) = \log(L/\text{erg s}^{-1}) - C(Z)$$

<table>
<thead>
<tr>
<th>Z</th>
<th>Z/Z_\odot</th>
<th>Hα</th>
<th>$\nu L_{\nu}(1500)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0001</td>
<td>0.05%</td>
<td>41.76</td>
<td>41.92</td>
</tr>
<tr>
<td>0.001</td>
<td>0.5%</td>
<td>41.81</td>
<td>41.96</td>
</tr>
<tr>
<td>0.001</td>
<td>0.5%</td>
<td>41.67</td>
<td>41.81</td>
</tr>
<tr>
<td>0.002</td>
<td>0.10</td>
<td>41.64</td>
<td>41.77</td>
</tr>
<tr>
<td>0.003</td>
<td>0.15</td>
<td>41.62</td>
<td>41.74</td>
</tr>
<tr>
<td>0.004</td>
<td>0.20</td>
<td>41.60</td>
<td>41.70</td>
</tr>
<tr>
<td>0.006</td>
<td>0.30</td>
<td>41.58</td>
<td>41.63</td>
</tr>
<tr>
<td>0.008</td>
<td>0.40</td>
<td>41.55</td>
<td>41.60</td>
</tr>
<tr>
<td>0.010</td>
<td>0.50</td>
<td>41.52</td>
<td>41.56</td>
</tr>
<tr>
<td>0.014</td>
<td>0.70</td>
<td>41.49</td>
<td>41.51</td>
</tr>
<tr>
<td>0.020</td>
<td>1.00</td>
<td>41.43</td>
<td>41.46</td>
</tr>
<tr>
<td>0.030</td>
<td>1.50</td>
<td>41.34</td>
<td>41.36</td>
</tr>
<tr>
<td>0.020</td>
<td>1.00</td>
<td>41.24</td>
<td>41.31</td>
</tr>
<tr>
<td>0.020</td>
<td>1.00</td>
<td>41.27</td>
<td>-</td>
</tr>
</tbody>
</table>

$^{a,b} \log_{10}(\text{luminosity / ergs s}^{-1}) \text{ at log(age/years)}=8.5.$

1 for an IMF truncated at a stellar mass of 100 M_\odot.

2 the recommended calibration of Kennicutt & Evans (2012).
Maximal relations for BPASS binary starbursts in the BPT diagrams.

Ref: Xiao, Eldridge & Stanway (2017, submitted)

For each of the three BPT diagrams, and at each metallicity in our model grid, we define a set of metallicity-dependent maximal starburst lines derived using BPASS v2.1 and CLOUDY radiative transfer models described in this paper. These are a set of equations for an upper locus which encloses all possible star formation powered HII regions with $0 < \log(nH) < 3, -3.5 < \log(U) < -1.5$ and $6.0 < \log(Age/yr) < 7.5$, assuming the inclusion of binary star populations. We use the same functional form as Kewley et al (2001):

$$\log([\text{O III}]/H\beta) = \frac{A_i}{\log(X_i) + B_i} + C_i,$$ \hspace{1cm} (A1)

where $X_i=[\text{N II}]/H\alpha$, $[\text{S II}]/H\alpha$ or $[\text{O I}]/H\alpha$, while A, B and C are constants. We also derive a line encompassing all metallicities.

<table>
<thead>
<tr>
<th>Z</th>
<th>$X_1=[\text{N II}]/H\alpha$</th>
<th>$X_2=[\text{S II}]/H\alpha$</th>
<th>$X_3=[\text{O I}]/H\alpha$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A_1 B_1 C_1</td>
<td>A_2 B_2 C_2</td>
<td>A_3 B_3 C_3</td>
</tr>
<tr>
<td>1×10^{-5}</td>
<td>0.74 2.31 -0.72</td>
<td>0.92 -0.91 -0.64</td>
<td>1.04 0.01 -0.62</td>
</tr>
<tr>
<td>1×10^{-4}</td>
<td>0.78 1.27 0.26</td>
<td>0.72 -0.77 0.26</td>
<td>1.00 0.03 0.32</td>
</tr>
<tr>
<td>0.001</td>
<td>0.52 0.42 0.98</td>
<td>0.50 -0.59 1.00</td>
<td>0.64 0.27 1.02</td>
</tr>
<tr>
<td>0.002</td>
<td>0.42 0.20 1.14</td>
<td>0.44 -0.55 1.16</td>
<td>0.50 0.05 1.16</td>
</tr>
<tr>
<td>0.003</td>
<td>0.32 0.13 1.18</td>
<td>0.44 -0.51 1.26</td>
<td>0.54 -0.15 1.28</td>
</tr>
<tr>
<td>0.004</td>
<td>0.28 0.11 1.12</td>
<td>0.54 -0.41 1.30</td>
<td>0.40 0.03 1.18</td>
</tr>
<tr>
<td>0.006</td>
<td>0.26 0.00 1.22</td>
<td>0.40 -0.35 1.32</td>
<td>0.36 -0.19 1.26</td>
</tr>
<tr>
<td>0.008</td>
<td>0.26 -0.08 1.26</td>
<td>0.34 -0.23 1.32</td>
<td>0.38 -0.23 1.32</td>
</tr>
<tr>
<td>0.010</td>
<td>0.28 -0.15 1.28</td>
<td>0.36 -0.17 1.36</td>
<td>0.32 -0.19 1.30</td>
</tr>
<tr>
<td>0.014</td>
<td>0.28 -0.24 1.36</td>
<td>0.28 -0.05 1.38</td>
<td>0.18 -0.19 1.28</td>
</tr>
<tr>
<td>0.020</td>
<td>0.18 -0.13 1.28</td>
<td>0.22 0.15 1.32</td>
<td>0.14 -0.05 1.24</td>
</tr>
<tr>
<td>0.030</td>
<td>0.18 -0.13 1.24</td>
<td>0.20 -0.63 1.26</td>
<td>0.18 0.09 1.24</td>
</tr>
<tr>
<td>0.040</td>
<td>0.32 -0.18 1.30</td>
<td>0.24 -0.35 1.28</td>
<td>0.30 0.25 1.30</td>
</tr>
<tr>
<td>All</td>
<td>0.28 -0.26 1.36</td>
<td>0.82 0.70 1.61</td>
<td>0.19 0.80 1.31</td>
</tr>
</tbody>
</table>
Rest-Ultraviolet Properties of Ongoing Starbursts (N_{ion}, L_{1500}, ξ_{ion}, β_{int})

Ref: Stanway, Eldridge & Becker (2016), updated to use v2.1 models of E+17
Please use both references for this data table.

Here we update the data table of Stanway et al (2016) to reflect values for our newer v2.1 models and the increased range of metallicities. Please see the original paper and E+17 for detailed definitions of $\xi_{\text{ion},0}$ (the ionizing photon production efficiency, assuming no escape fraction) and β_{int} (the rest frame ultraviolet spectral slope of the stellar component, measured around 1500Å).

<table>
<thead>
<tr>
<th>Z</th>
<th>log N_{ion} bin</th>
<th>log N_{ion} sin</th>
<th>log $[L_{1500}/L_{\odot}]$ bin</th>
<th>log $[L_{1500}/L_{\odot}]$ sin</th>
<th>log $[\xi_{\text{ion},0}]$ bin</th>
<th>log $[\xi_{\text{ion},0}]$ sin</th>
<th>β_{int} bin</th>
<th>β_{int} sin</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-5}</td>
<td>53.76</td>
<td>53.62</td>
<td>3.97</td>
<td>3.97</td>
<td>25.60</td>
<td>25.50</td>
<td>-2.21</td>
<td>-2.11</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>53.74</td>
<td>53.59</td>
<td>3.98</td>
<td>3.91</td>
<td>25.56</td>
<td>25.46</td>
<td>-1.99</td>
<td>-1.87</td>
</tr>
<tr>
<td>0.001</td>
<td>53.67</td>
<td>53.54</td>
<td>3.93</td>
<td>3.77</td>
<td>25.48</td>
<td>25.42</td>
<td>-1.89</td>
<td>-1.75</td>
</tr>
<tr>
<td>0.002</td>
<td>53.63</td>
<td>53.51</td>
<td>3.90</td>
<td>3.74</td>
<td>25.46</td>
<td>25.40</td>
<td>-1.86</td>
<td>-1.74</td>
</tr>
<tr>
<td>0.003</td>
<td>53.60</td>
<td>53.49</td>
<td>3.89</td>
<td>3.71</td>
<td>25.44</td>
<td>25.38</td>
<td>-1.79</td>
<td>-1.62</td>
</tr>
<tr>
<td>0.004</td>
<td>53.57</td>
<td>53.46</td>
<td>3.86</td>
<td>3.69</td>
<td>25.40</td>
<td>25.36</td>
<td>-1.69</td>
<td>-1.52</td>
</tr>
<tr>
<td>0.006</td>
<td>53.49</td>
<td>53.44</td>
<td>3.84</td>
<td>3.67</td>
<td>25.33</td>
<td>25.34</td>
<td>-1.55</td>
<td>-1.34</td>
</tr>
<tr>
<td>0.008</td>
<td>53.45</td>
<td>53.40</td>
<td>3.82</td>
<td>3.64</td>
<td>25.30</td>
<td>25.31</td>
<td>-1.43</td>
<td>-1.21</td>
</tr>
<tr>
<td>0.010</td>
<td>53.41</td>
<td>53.37</td>
<td>3.80</td>
<td>3.61</td>
<td>25.25</td>
<td>25.28</td>
<td>-1.39</td>
<td>-1.09</td>
</tr>
<tr>
<td>0.014</td>
<td>53.35</td>
<td>53.33</td>
<td>3.76</td>
<td>3.58</td>
<td>25.22</td>
<td>25.25</td>
<td>-1.26</td>
<td>-0.89</td>
</tr>
<tr>
<td>0.020</td>
<td>53.29</td>
<td>53.26</td>
<td>3.70</td>
<td>3.53</td>
<td>25.17</td>
<td>25.19</td>
<td>-0.99</td>
<td>-0.58</td>
</tr>
<tr>
<td>0.030</td>
<td>53.17</td>
<td>53.15</td>
<td>3.64</td>
<td>3.41</td>
<td>25.07</td>
<td>25.11</td>
<td>-0.79</td>
<td>-0.14</td>
</tr>
<tr>
<td>0.040</td>
<td>53.11</td>
<td>53.08</td>
<td>3.59</td>
<td>3.35</td>
<td>25.02</td>
<td>25.05</td>
<td>-0.65</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Observable and inferred parameters from our model $10^6 M_\odot$ stellar populations for a system undergoing star formation at a constant rate of $1 M_\odot$ yr$^{-1}$, observed at an age of 100 Myr after the onset of star formation at which point the fluxes have stabilised. Rest frame 1500Å luminosities are given in multiples of L_\odot and photon rates in s$^{-1}$. β_{int} is the intrinsic 1500Å spectral slope arising from the stellar continuum. $\xi_{\text{ion},0}$ is the ionizing photon production efficiency.
Z-dependent SN Rates for Constant SFR

Ref: Eldridge, Stanway et al (2017, E+17)

In the data release we provide tables of SN numbers by subtype for simple stellar populations. The table below provides the total rate per year of core-collapse supernovae (i.e. types Ib+Ic+II-P+II-other) and GRBs (QHE pathway only, see paper) for our standard population, assuming constant star formation.

<table>
<thead>
<tr>
<th>Z</th>
<th>log(CCSN Rate)</th>
<th>Log(GRB Rate)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bin</td>
<td>sin</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>-2.957</td>
<td>-2.796</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>-2.949</td>
<td>-2.836</td>
</tr>
<tr>
<td>0.001</td>
<td>-2.944</td>
<td>-2.804</td>
</tr>
<tr>
<td>0.002</td>
<td>-2.948</td>
<td>-2.805</td>
</tr>
<tr>
<td>0.003</td>
<td>-2.968</td>
<td>-2.797</td>
</tr>
<tr>
<td>0.004</td>
<td>-2.989</td>
<td>-2.796</td>
</tr>
<tr>
<td>0.006</td>
<td>-3.062</td>
<td>-2.786</td>
</tr>
<tr>
<td>0.008</td>
<td>-3.012</td>
<td>-2.789</td>
</tr>
<tr>
<td>0.010</td>
<td>-3.023</td>
<td>-2.765</td>
</tr>
<tr>
<td>0.014</td>
<td>-2.874</td>
<td>-2.765</td>
</tr>
<tr>
<td>0.020</td>
<td>-2.950</td>
<td>-2.743</td>
</tr>
<tr>
<td>0.030</td>
<td>-3.132</td>
<td>-2.697</td>
</tr>
<tr>
<td>0.040</td>
<td>-2.891</td>
<td>-2.672</td>
</tr>
</tbody>
</table>

The rates of core-collapse supernovae (CCSNe) and gamma-ray bursts (GRBs) per year in our canonical models, assuming constant star formation at the rate of $1 \, M_\odot \, yr^{-1}$, and that the rates have had sufficient time to stabilise (i.e. SFR has been constant for $>100 \, Myr$. This GRB rate is isotropic (i.e. not corrected for beaming angle) and assumes only pathways involving spin up by mass accretion and rotationally-mixed, chemically homogenous evolution. Other pathways may not be accounted for. Where no number is provided, these events are sufficiently rare not to be represented in our standard synthesis models.
8 - Auxilliary Software

In the directory “BPASSv2.1_example_plot_routines” we provide a number of plotting scripts to provide examples of reading in and manipulating our data files. These are in the IDL scripting languages. Python users looking for guidance and puzzled by the codes may find online “Numpy for IDL users” resources helpful.

CMD plotting code - plot1cmdmake.pro and plot1cmdplot.pro

The input_bpass_<z> files are required by the CMD calculation code. The information taken from them is as follows:

Row (a) - Filename of model to load
Row (b) - Model imf probability and model type

Model type, 0=merger model, 1=normal primary, 2=normal secondary, 3=single star secondary model, 4=binary QHE secondary model

if(modeltype is 2 or greater) then read in more lines:
Row (c) - Mixed imf and mixed age (number of models that are rejuvenated to the mixed age)

For modeltype 4 also read in:
Row (d) - initial black hole and initial period (initial binary parameters for QHE system to follow widening of orbit due to mass loss from stellar winds alone, QHE stars get smaller during main sequence so shouldn’t interact otherwise).

The supplied IDL code reads these input files, then calls on the appropriate stellar models to determine the colours and magnitudes of each star in the population, before weighting these appropriately to create a colour-magnitude diagram.

The file “plot1cmdmake.pro” performs the above binning and outputs the results into IDL save files, this is advisable as it takes time to go through a large number of stellar models. The code will need to be modified so that it points to the correct location for the binary models. It should put to the directory where it can find the “NEWBINMODS” and “NEWSINMODS” directories created once the available stellar model tar files are unpacked.

The file “plot1cmdplot.pro” then creates plots from these save files and should just need to be run from the same directory as the “make” code.
We note with this code it is possible to modify to work out any colour or filter as listed in the above readme descriptions. If advice is required please feel free to contact the BPASS team.

Example plotting codes

We also supply the following IDL codes to plot various output files and properties in the main data release:

- plot1colours.pro
- plot1starmass.pro
- plot1numbers.pro
- plot1supernova.pro
- plot1yields.pro
- plot1ionizing.pro
- plot1hr.pro
- plot1spectra.pro

Each file loads in *all* the output files over metallicities and IMFs, assuming it is in a directory level equivalent to all the output from the downloadable tar files (this may take a while!).

Each file will then plot each variable, e.g. M(B) colour, for each IMF on the same panel, allowing a direct comparison. They are simple and can be modified to only plot one IMF by just changing the “for” loop limits.
9 - Areas under Development

We are aware of many areas in which BPASS models can be improved.

Key areas on which we are actively working include the following:

- Old stellar populations (involving binary input distributions, mass loss rates, improved treatment of low mass secondaries)
- Abundances (varying the input elemental abundance ratios)
- Rotation (improved implementation of rotational mixing and other effects of spin up due to angular momentum transfer)
- Spectral resolution (primarily dependent on improved atmosphere models becoming available at all metallicities)
- Accretion luminosities (derived based on mass transfer and an assumed SED for accreted material onto WD, NS or BHs)
- Complex star formation histories (combining SSPs to model mature galaxies more effectively)

While suggestions for future developments are always welcome, we cannot promise a rapid response to specific requests!
10 - The BPASS Team

J.J. Eldridge is a senior lecturer at the University in Auckland in New Zealand. They work primarily on theoretical models of stellar evolution and stellar population synthesis. Email: j.eldridge@auckland.ac.nz

E.R. Stanway is an associate professor at the University of Warwick in the United Kingdom. Her work focuses on the stellar populations of star forming galaxies and transient hosts, and their evolution over cosmic time. Email: e.r.stanway@warwick.ac.uk

L. Xiao is a postdoctoral research associate at the Department of Astronomy, University of Science and Technology of China, having recently completed a PhD at the University of Auckland. Her research centres on the nebular emission from young stellar populations.

L.A.S. McClelland is a PhD candidate at the University of Auckland. His research involves improved modelling of helium giants.

J.C. Bray is a PhD candidate at the University of Auckland. His research focuses on an improved prescription for the distribution of kick velocities for neutron star and black hole production.

S.M.L. Greis has recently completed a PhD at the University of Warwick. Her research focused on the stellar populations in local analogue galaxies to the distant Universe. She is now leaving astronomy to work as a Data Scientist.

G. Taylor and M. Ng are undergraduate students at the University of Auckland. They are responsible for generating new WR and O star atmosphere models.

This manual was generated by Elizabeth Stanway and JJ Eldridge. Suggestions for improvement are always welcome.
Thanks

This work would not have been possible without use of the NeSI Pan Cluster, part of the NeSI high-performance computing facilities. New Zealand’s national facilities are provided by the NZ eScience Infrastructure and funded jointly by NeSI’s collaborator institutions and through the Ministry of Business, Innovation & Employment’s Research Infrastructure programme. URL: https://www.nesi.org.nz.

JJE acknowledges travel funding and support from the University of Auckland. ERS acknowledges travel funding and support from the University of Warwick.

We thank Robert Izzard for helping us to obtain atmosphere models. We also thank Dimitri Veras for helping us to clarify the stellar model README.

We acknowledge very many useful and interesting discussions with BPASS users and collaborators past, present and future, too numerous to name.

We note that BPASS development began when the PIs were post-doctoral researchers and we thank our previous employers (University of Bristol, University of Cambridge, Queen’s University Belfast and the Institute d’Astrophysique de Paris) for supporting our use of time on this work.

BPASS is human-resource limited and further iterations will be dependent on the PIs securing research funding in future years.