NECK SWELLINGS IN CHILDREN

Neck lumps are very common in the paediatric population. The majority of these lumps are enlarged lymph nodes that resolve either spontaneously or with antibiotics, however, a small number persist or enlarge and may cause considerable concern. The aim of this article is to assist with decision-making in the management of persistent neck lumps in children.

It is useful to classify paediatric neck lumps into two broad categories:
midline and lateral, as each group is managed differently. In general, midline neck masses are developmental until proven otherwise; and lateral neck masses are lymph nodes until proven otherwise.

Paediatric head and neck lumps differ from those in adults in that malignancy is much less likely, although occasionally tumours such as lymphoma or rhabdomyosarcoma may present as neck lumps.

The following discussion outlines some of the common neck swellings seen in children, with a logical approach to investigation and management of these conditions.

Lateral Neck Masses

When taking the history, it is important to note the age of the patient at onset of the mass; its duration, change in size, and any associated systemic symptoms. On examination, cystic masses can generally be distinguished from solid masses, and it is important to look for any skin changes or sinus openings associated with the mass.

The most useful investigation is fine needle aspiration (FNA) cytology.

The most common lateral neck mass seen in children is an enlarged lymph node due to viral or bacterial lymphadenitis, including infection with non-tuberculous mycobacteria. Branchial cleft cysts are the second common cause, and there are a number of other possible diagnoses such as lymphangiomas, hemangiomas, and malignancy. Lymphadenopathy and branchial cleft cysts are briefly described below.

Lymphadenopathy
(Benign Lymphoid Hyperplasia)

Cervical lymphadenopathy in children is commonly due to bacterial or viral infection, usually originating in the upper aerodigestive tract. These lymph nodes are usually less than 1 cm in diameter, often multiple, soft, and situated in the upper cervical region. They may remain enlarged for some weeks after the primary infection has resolved. Non-tuberculous Mycobacterium (NTM) is a cause of persistent lymphadenopathy. This should be referred for FNA or excision biopsy after a course of antibiotics and a period of observation.

Non-Tuberculous Mycobacterium

Infection with NTM, or atypical mycobacteria, most commonly affects children under the age of 5 years. It usually causes a unilateral lymph

Salient Points

- Lateral neck lumps are usually enlarged lymph nodes, and may be treated initially with antibiotics. Differential diagnoses include branchial cleft cyst, non-tuberculous Mycobacterium, and benign and malignant neoplasms

- A midline neck lump that moves on swallowing is thyroid in origin (this includes a thyroglossal duct cyst). Differential diagnoses include dermoid cyst, plunging ranula, lymph node, and lymphangioma

- Fine needle aspiration cytology is the most useful investigation for neck lumps in children, but may require a general anaesthetic

- Malignancy is still a consideration in the paediatric population

JAMIE RYAN AND MURALI MAHDEVAN
Department of Paediatric Otolaryngology, Head and Neck Surgery, Starship Children's Hospital, Auckland, New Zealand

Current Therapeutics, June 2001
node enlargement, often adjacent to the submandibular or parotid gland. The child is usually well, with a non-tender neck mass and no systemic symptoms. The mass is often fixed to the skin and may be discharging through a sinus (Figure 1). The chest X-ray is normal in most cases. Over 95% of these infections are due to Mycobacterium avium-intracellulare complex (MAC).

NTM are found in soil, water, food, plants, and in the pharyngeal secretions of healthy people. There is no evidence for person-to-person transmission. The organism is thought to gain entry through the mucous membranes of the mouth, ears, or eye. Histology may demonstrate granulomatous inflammation, but there are no features specific to NTM. It is important to distinguish NTM from Mycobacterium tuberculosis as it has quite a different clinical course and treatment.

Treatment of NTM is by surgical excision of the mass. These organisms are often resistant to conventional anti-tuberculous medication. A review of recent cases at Starship Children’s Hospital, Auckland, New Zealand showed that complete excision gives the best rate of healing compared with other procedures, such as needle aspiration, incision and drainage or curettage.

Branchial Cleft Cysts

Branchial cleft cysts are developmental anomalies, thought to arise from incomplete closure of embryological branchial clefts. They usually present in the first or second decade of life as a smooth, round, non-tender neck lump (Figure 2). The mass may become inflamed or form an abscess following an upper respiratory tract infection. The second branchial cleft is the most common type, found high in the neck, deep to the anterior border of the sternomastoid muscle.

FNA cytology provides the most useful information. Ultrasound is generally not required, and CT/MRI scans may be useful for surgical planning.

Management is surgical excision, after treatment of any acute infection.

Management of Lateral Neck Masses

A diagnostic approach to managing lateral neck masses is shown in Figure 3.

It is usually possible to determine whether the mass is cystic or solid by palpation.

Cystic masses that appear infected should be referred to a surgeon for incision and drainage, with biopsy of the cyst wall and microbiological culture. Whether or not the mass subsequently resolves determines the need for imaging or further surgery. Cystic masses that are not infected should be referred for FNA cytology, as this will yield the diagnosis in most cases. In the case of a child, general anaesthetic is often required for FNA.

Solid lateral neck masses in children are most likely to be a lymph node, so empirical treatment with a 2-week course of a broad-spectrum antibiotic such as amoxicillin/clavulanic acid is appropriate. If the mass is still present 6 weeks after commencing the antibiotics, surgical referral is necessary.

Figure 2. Branchial cleft cyst (arrow) at the anterior border of the sternomastoid muscle.

Midline Neck Masses

Midline neck swellings in children may be considered to be a different entity to lateral masses, as they comprise a different group of diagnoses and often require different investigations and treatment.

Important features in the history of a midline lump are the duration and progression of the mass, and whether there are any local symptoms such as pain. On examination, it is important to note whether the mass moves with swallowing or tongue protrusion, as well as whether the mass feels cystic or solid. Ultrasound scanning is useful for midline neck masses, as well as FNA.

The most common types of midline neck masses seen in children have a developmental aetiology, such as thyroglossal duct cyst and dermoid cyst. Midline lymph nodes and plunging ranula may also occur in children. Other causes include thyroid nodules, haemangioma and lymphangioma. Occasionally, normal anatomical structures are mistakenly thought to be neck masses. The thyroglossal duct cyst, dermoid cyst and plunging ranula are outlined below.

Thyroglossal Duct Cysts

This is the most common midline neck cyst. These cysts form in a persistent thyroglossal duct, so may occur anywhere between the base of the tongue and the thyroid.
Figure 3. Diagnostic approach to managing lateral neck masses.
gland. They are true cysts, so are not
normally associated with any
cutaneous sinus or fistula. They
usually present in the midline near
the level of the hyoid bone (Figure 4) as
a painless cystic lump that moves on
swallowing or with protrusion of the
tongue. Occasionally, infection causes
rapid enlargement of the mass. The
cyst can contain ectopic thyroid tissue,
and occasionally contains all the
functioning thyroid tissue (1%). For
this reason, ultrasound scanning is
recommended preoperatively in
order to assess the presence of a
normal thyroid gland.

Treatment involves excision of the
cyst with the body of the hyoid bone,
and a core of tissue leading up to
the foramen cecum in the base of the
tongue (Sturzd's procedure).

Dermod cysts

Dermod cysts are similar to teratomas,
and arise from epithelium that has
been entrapped during embryogenesis
or by traumatic implantation. Dermod
cysts consist of epithelium-lined
cavities filled with skin appendages
(e.g. hair, hair follicles, and sebaceous
glands). They are found at other
sites in the head and neck, including

![Figure 4. Thyroglossal duct cyst (arrow) situated in the midline, at the level of the hyoid bone.](image)

the orbit, nose, nasopharynx and
oral cavity.

Typically, dermod cysts present
in the midline of the neck, usually
in the submental region. They are

painless unless infected. Management
is by complete surgical excision.

Plunging Ranula

This is a pseudocyst formed by
mucous extravasation from the
sublingual gland. It presents as a
swelling in the submental or sub-
mandibular region that fluctuates in
size (Figure 5). There may be a
history of minor trauma. FNA is
diagnostic if saliva is aspirated.
Treatment is complete excision of the
ranula with the sublingual gland,
and this can usually be done via an
infra-oral approach.

Management of
Midline Neck Masses

A diagnostic approach to managing
midline neck masses is shown in
Figure 6. The most important
diagnostic feature of midline neck
swellings is whether the mass
moves on swallowing. If so, the lump
is a thyroglossal duct cyst until
proven otherwise. An ultrasound
scan should be arranged to ensure
that the thyroid gland is present in
the normal position, and surgical referral
is required for consideration of
excision.

Figure 5. Plunging ranula. This ill-defined soft mass is situated just to the right of the midline in the submental/submandibular region.
If the lump does not move with swallowing then further management depends on whether the lump feels cystic or solid. If it feels solid, a 2-week course of antibiotics should be prescribed and the patient reviewed after 6 weeks. If the lump is no longer present, it was most likely an enlarged lymph node and no further treatment is required. If the lump is still present after 6 weeks then further imaging or FNA may be necessary to arrive at a diagnosis.

On the other hand, if the lump feels cystic, the patient should be referred for FNA which may differentiate between an infected lymph node, ranula, dermoid, haemangioma or lymphangioma.

Summary

Neck lumps in children are best considered as midline or lateral. A lateral neck lump is most likely to be a lymph node, and a lump occurring in the midline is most likely to be developmental. FNA cytology is the most useful investigation, although this may require a general anaesthetic in children. Radiological investigations have a role in surgical planning once a diagnosis has been reached, but are not routinely required when evaluating lateral neck lumps. Ultrasound scan is recommended to evaluate the thyroid gland in a child presenting with a midline neck lump. The majority of persistent neck lumps are treated by surgical excision.

Figure 6. Diagnostic approach to managing midline neck masses. Abbreviations: CT = computed tomography; MRI = magnetic resonance imaging.