The Child with a Runny Nose

Although it is unusual for children to complain about having a runny nose, parents very commonly do so on their behalf. There are a number of causes of rhinitis in children and the differential diagnosis changes with age.

History
Cases of rhinitis can be divided into allergic and non-allergic rhinitis, and silent features from the history usually enable one to assign a patient to one of these categories. Allergic rhinitis is suspected when there is a family history of atopic illnesses, or when a child with rhinitis has co-existent asthma or atopic dermatitis. An allergic basis for rhinitis is suggested by seasonality of symptoms, provocation of symptoms by exposure to aerogenic allergens (such as cat dander or house dust mite) and associated symptoms of allergic conjunctivitis.

Physical Examination
Frequent rubbing of the allergic nose can lead to the formation of a transverse crease across the nose, while venous congestion of the lower eyelids may result in allergic shiners.

The nasal mucosa and septum may be examined by using an autoscope with a relatively large speculum. Physical findings typical of allergic rhinitis include pale pink or bluish grey mucosa over the inferior turbinates, which are coated with watery secretions (fig. 1).

Examination with an autoscope may reveal polyps under the middle turbinates in cases of nasal polyposis, or purulent secretions flowing over the inferior turbinate in infective rhinosinusitis (fig. 2).

Some judgement can be made about the patency of the nasal passages and whether there is significant septal deviation that may be contributing to a feeling of nasal obstruction.

Differential Diagnosis
The differential diagnosis for paediatric rhinorrhoea is summarised in table 1.

Allergic Rhinitis
Allergic rhinitis results from the production of allergen-specific IgE. Exposure to an allergen in a sensitised child causes the release of inflammatory mediators, such as histamine, from the nasal mucosa, which causes clear rhinorrhoea, sneezing, itch and obstruction. In New Zealand, seasonal allergic rhinitis is usually caused by sensitivity to grass pollen, whereas perennial rhinitis is caused by house dust mite, pet dander and mould spore allergy.

Role of Skin Testing in Diagnosis
Skin prick testing with aeroallergen extracts is useful in the management of rhinitis because it answers two questions:
- Is the patient atopic?
- Against which specific allergens has the patient produced IgE?

Management points
- Rhinitis in the paediatric population can be divided into allergic and non-allergic cases. This distinction has important management implications.
- Skin prick testing is a very useful tool in distinguishing allergic from non-allergic rhinitis and for helping to identify which allergens a patient is sensitised to.
- Allergen avoidance is an important method of treatment for paediatric rhinitis (particularly for house dust mite allergy).
- Nasal examination with an autoscope may help establish the diagnosis by identifying polyps, pus, foreign bodies, etc.
The child with a runny nose

Fig. 1. Allergic nasal mucosa over an inferior turbinate. The mucosa is swollen, glistening and has a bluish tinge.

Anopy is defined as having at least one positive skin prick test to common aeroallergens. Forty percent of the New Zealand population are atopic, and 19% of 13- and 14-year-olds have allergic rhinitis.[1,2] Practically all patients with allergic rhinitis have positive skin prick tests (i.e. skin prick testing is highly sensitive), however many patients with positive skin prick tests do not have an allergic disease (i.e. the test is not very specific). Patients with symptoms of rhinitis who have negative skin prick tests to common aeroallergens do not have allergic rhinitis; instead they have one of the causes of non-allergic rhinitis, such as non-atopic rhinitis with eosinophilia or vasomotor rhinitis or infective rhinosinusitis.

Management

The three modalities of management of allergic rhinitis are drug therapy, allergen avoidance and immunotherapy.

Drug Treatment

The most effective medication for the treatment of moderate to severe allergic rhinitis is the regular application of topical corticosteroid nasal sprays.[3] Oral and topical antihistamines are effective and particularly useful when the symptoms are intermittent, such as on high pollen days because of their rapid onset of action. Second-generation antihistamines are well tolerated but expensive medications. Antihistamines and nasal steroids have an additive effect in allergic rhinitis.[4]

Sodium cromoglycate nasal spray is less effective than nasal corticosteroids and has a short half-life necessitating three to four doses per day.[5]

The usefulness of decongestant nasal sprays for the treatment of rhinitis is limited by the short period of time for which they can be used without the risk of developing rebound nasal congestion. However, use of a decongestant spray for the first few days of initiating treatment with topical corticosteroid sprays may increase the access of steroid spray into the nose.

Fig. 2. A polyp under the middle turbinate. Nasal polyps look like peeled grapes.

Allergen Avoidance

A combination of history and skin prick tests will reveal which allergens are clinically relevant to a particular child. If the symptoms are perennial, the most common culprits are house dust mite, cat and mould spores. House-dustmite exposure can be reduced by a few simple measures which can produce clinical improvement. The key step is to encase the pillows and mattress in covers that are impermeable to dust mite allergen. Bed linen should be hot washed weekly and blankets soaked in eucalyptus oil and detergent before warm washing every few weeks. Soft toys should be washed periodically and should spend 1 day a week in the freezer. These strategies are not expensive and can improve asthma and eczema as well as allergic rhinitis. It is best not to keep

Table 1. Differential diagnosis of paediatric rhinitis

<table>
<thead>
<tr>
<th>Allergic</th>
<th>Non-allergic</th>
<th>anatomical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seasonal</td>
<td>Non-allergic rhinitis with eosinophilia</td>
<td>Adenoidal hypertrophy</td>
</tr>
<tr>
<td>Perennial</td>
<td>Vasomotor rhinitis</td>
<td>Chronic atresia</td>
</tr>
<tr>
<td>- house dust mite</td>
<td>Rhinitis medicamentosa</td>
<td>Polyps</td>
</tr>
<tr>
<td>- cat dander</td>
<td>Infectious rhinosinusitis</td>
<td>Foreign bodies</td>
</tr>
<tr>
<td>- mould spores</td>
<td>Neonatal rhinitis</td>
<td>Tumours</td>
</tr>
</tbody>
</table>
Figs 3a and b. A case of chronic otitis media: a) before and b) after surgical repair, viewed from the nasopharynx through a 90° endoscope.

cats in the homes of atopic children; however, it is difficult to convince families of the need to find alternative homes for their pets. Keeping the cat outside is a reasonable, although poorly complied with, compromise.

Immunotherapy

Some severe cases of allergic rhinitis do not respond adequately to topical corticosteroids and antihistamines, and some allergens such as grass pollen are not easily avoided. Immunotherapy can be recommended in these circumstances. Immunotherapy involves the subcutaneous injection of minute amounts of allergen, with the dose increasing, usually on a weekly basis, to a large dose which, when given regularly over a period of time, diminishes the immune hyper-response to that allergen. Maintenance injections are usually given once a month for a period of 3 years. Such a course of immunotherapy can bring about improvement that lasts for very many years.

The repeated injections are not well tolerated by small children, so immunotherapy is rarely given to children younger than 10 years. The efficacy of sublingual immunotherapy is being actively researched. Some trial

New Ethicals Journal August 2001

Mobic: COX-2 selective Inhibition

Mobic. The one-a-day treatment for pain relief from osteoarthritis and rheumatoid arthritis.

With all the benefits of a COX-2 Selective Inhibitor, Mobic gives your patients improved QoI tolerability over traditional NSAIDs, as well as a proven reduction in pain.

Prescribe Mobic. Give your patients the key to an easier day - where even the price is a relief.
Non-allergic rhinitis may be associated with nasal polyps, perionosal rhinitis, nasal and aspirin hypersensitivity (in combination of four features known collectively and inaccurately as the aspirin trial). In contrast to allergic rhinitis, non-allergic rhinitis usually begins in adulthood. First-line treatment is with topical corticosteroids.

Vasomotor Rhinitis

This condition is characterised by rhinorrhea and nasal stuffiness, which are provoked by physical stimuli, such as exposure to cold air, and ingestion of hot or spicy food. Vasomotor rhinitis usually responds well to treatment with ipratropium nasal spray.

Rhinitis Medicamentosa

This condition is uncommon in young children, but adolescents may become chronic users of vasconstrictor nasal sprays and develop a dependence on such drugs. Treatment involves withdrawal of the vasoconstrictor nasal spray and its replacement with topical corticosteroid preparations.

Sinusitis

Acute bacterial sinusitis is most commonly a sequel of a viral upper respiratory tract infection. The nasal rhinitis leads to obstruction of the sinus ostia and subsequently to bacterial growth in the stagnant mucus trapped within the sinus system.
Acute bacterial sinusitis is most commonly a sequela of a viral upper respiratory tract infection.

Signs of acute sinusitis in older children include facial pain, headache and fever. Younger children commonly present with rhinorrhea and cough. Rhinorrhea is sometimes minimal, but there may be significant posterior drip. The diagnosis and extent of sinusitis can be confirmed with CT scanning. Microbiological testing is usually of little help as there is little correlation between the results of nasal swabs and maxillary sinus punctures.

Acute sinusitis is treated with antibiotics. Chronic sinusitis may respond to courses of antibiotics and topical or oral corticosteroids. Endoscopic surgery has been performed successfully in children, but because chronic sinusitis tends to resolve as the child grows older, surgery is performed less frequently than in the adult population.

Neonatal Rhinitis

Neonatal rhinitis is an idiopathic disorder, and is characterised by noisy breathing, rhinorrhea and poor feeding, which presents within the first few weeks of life. The nasal mucosal edema usually responds well to dexamethasone nose drops, but these should be used with caution because of the possibility of systemic steroid effects.

Adenoids

Hypertrophy of the adenoids may cause chronic purulent rhinitis, which is often associated with other symptoms of upper airway obstruction, such as snoring and mouth breathing. The adenoids are small at birth and enlarge over the first to fourth years of life as a result of increased immunological activity. Most children grow out of adenoid-related problems by the age of 8 to 10 years. Unfortunately, it is difficult to differentiate symptoms caused by adenoidal hypertrophy from those of perennial allergic rhinitis on the basis of symptoms alone. A child who mouth breathes is often labelled as having enlarged
adenoïdes, but this problem may well be caused by turbinate hypertrophy. Adenoidal hypertrophy may be diagnosed by flexible nasendoscopy (not tolerated by many children) or with a lateral neck x-ray. A poor response to medical therapy for rhinitis may indicate that adenoïdes are contributing to nasal symptoms.

Choanal Atresia
This is the most common congenital anomaly of the nose. It results from failure of perforation of the septum that divides the nose from the pharynx (Fig. 3). When this anomaly is bilateral, it presents shortly after birth with respiratory difficulty and cyanosis, as the neonate is an obligate nose breather for the first 6 to 8 weeks. Airway obstruction is relieved when the mouth is opened to cry. Nearly half the children with choanal atresia have other congenital anomalies. Unilateral atresia may go undiagnosed until later in life when it presents with symptoms of unilateral nasal obstruction and discharge.

Nasal Polyps
Nasal polyps typically appear as bilateral glistening sacs (which look like peeled grapes) originating from the ethmoid sinuses. They are rare in children younger than 10 years old and if found, should instigate investigations for cystic fibrosis, or if present in the neonate, for meningoencephalocoele or optic glioma (Fig. 4). Nasal polyps can also occur in children who have primary ciliary dyskinesia. Nasal polyps are treated surgically. Recurrence is a significant problem, which may be reduced by the long-term administration of topical corticosteroids.

Foreign Bodies
A unilateral purulent and usually malodorous discharge may result from a foreign body in the nose. Placement is frequently denied by the child, and the event may well have been forgotten.

Septal Deviation
Nasal septal deviation is seldom a cause of rhinorrhea but may cause nasal obstruction. Septal deviation in children can be congenital or be a result of birth trauma.

Tumours
Tumours are a rare cause of rhinorrhea, but unilateral symptoms and signs should prompt an examination of the nose. In adolescents, nasal obstruction and recurrent nosebleeds may be a sign of an angiofibroma, which although a benign tumour can become locally invasive.

Summary
Rhinorrhea in the paediatric population has a number of differential diagnoses. Features from the history and physical examination and results of investigations usually allow a specific diagnosis to be made. Once the nature of the rhinorrhea has been determined, treatment can be tailored to the cause.

References

About the Authors
Richard Douglas, MD, FRACP, MBCP, is a Clinical Immunologist and Allergist who is currently an advanced trainee in otorhinolaryngology at Stockland Children's Hospital, Auckland. His special interests include the management of nasal allergy.

Murali Mahadevan, MBBS, FRACS, is a Consultant Surgeon and has been a Paediatric Otolaryngologist since 1995, having completed fellowships training at the Royal Children's Hospital, Melbourne and Great Ormond Street Children's Hospital, London. His special interests include head and neck surgery and paediatric otorhinolaryngology. Correspondence: Mr Murali Mahadevan, Paediatric Otolaryngologist, St George's Children's Hospital, Park Rd, Private Bag 90103, Auckland.

Coming in next issue ...

Obesity and Fertility

New Ethics Journal August 2001