please get a handont from the back!

Stats 101/101G/108 Workshop

Hypothesis Tests: We'll Hart Proportions [HTP] 39.35am.

2020

by Leila Boyle

Stats 101/101G/108 Workshops

The Statistics Department offers workshops and one-to-one/small group assistance for Stats 101/101G/108 students wanting to improve their statistics skills and understanding of core concepts and topics.

Leila's website for Stats 101/101G/108 workshop hand-outs and information is here: www.tinyURL.com/stats-10x

Resources for this workshop, including pdfs of this hand-out and Leila's scanned slides showing her working for each problem are available here: www.tinyURL.com/stats-HTP

Leila Boyle

Undergraduate Statistics Assistance, Department of Statistics Room 303S.288 (second floor of the Science Centre, Building 303S) l.boyle@auckland.ac.nz; (09) 923-9045; 021 447-018

Want help with Stats?

Stats 101/101G/108 appointments

Book your preferred time with Leila here: www.tinyURL.com/appt-stats, or contact her directly (see above for her contact details).

Stats 101/101G/108 Workshops

One computing workshop, four exam prep workshops and four drop-in sessions are held during the second half of the semester.

Workshops are run in a relaxed environment and allow plenty of time for questions. In fact, this is encouraged! ©

Please make sure you bring your calculator with you to all of these workshops!

No booking is required – just turn up to any workshop! You are also welcome to come along virtually on Zoom if you prefer. Search your emails for "Leila" to find the link – email Leila at I.boyle@auckland.ac.nz if you can't find it.

Computer workshop: Hypothesis Tests in SPSS

www.tinyURL.com/stats-HTS

Computing for <u>Assignment 3</u> – covers the computing you need to do for Questions 3 and 4 (INZight plots & SPSS output). There are six <u>identical</u> sessions:

- Friday 16 October, 3-4pm
- o Monday 19 October, 10-11am
- Monday 19 October, 2-3pm
- Tuesday 20 October, 4-5pm
- Wednesday 21 October, 11am-midday
- Wednesday 21 October, 3-4pm

Exam prep workshops

Chi-Square Tests

www.tinyURL.com/stats-CS

Exam revision for <u>Chapter 9</u> – Saturday 24 October, 1-4pm, LibB15 (useful exam prep and also useful for the **Chapter 9 Quiz** due at 11pm on Wednesday 28 October!)

Regression and Correlation

www.tinyURL.com/stats-RC

Exam revision for <u>Chapter 10</u> – Saturday 31 October, 9.30am-12.30pm, LibB10 (useful exam prep and also useful for the **Chapter 10 Quiz** due at 11pm on Wednesday 4 November!)

7

Hypothesis Tests: Proportions www.tinyURL.com/stats-HT

Exam revision for Chapters 6 & 7 (with a focus on proportions) – Tuesday 3

November, 9.30am-12.30pm, LibB10 (useful exam prep)

Drop-in sessions

- Saturday 17 October, 9.30am-4pm, LibB10
- o Saturday 24 October, 9.30am-12.30pm, LibB15
- o Monday 26 October, 9.30am-4pm, LlbB10
- Saturday 31 October, 1-4pm, LibB10

Hypothesis Tests: Proportions [HTP]

This material builds on a number of workshops already held in the <u>first</u> half of this semester, which you may or may not have attended.

If you want to learn more about how to extract a proportion/probability from a two-way table of counts, see the Proportions and Proportions proportions. For more practice on how to quantify the extract a proportions and Proportions proportions, see the Confidence Intervals: Proportions [CIP] workshop material.

■Useful reference: Chance Encounters, pages 40 – 42

Recall that:

impossible < acertain

- A **proportion** is a number between 0 and 1 that estimates the likelihood of an event occurring.
- Our main source of proportions is from data which will usually be presented in a table of counts.

t-tests by Hand – One and Two Proportion/s

We use statistics to find out about the real world and aspects of it specific to our area of interest. Statistical tools allow us to deal with the **uncertainty** present in all samples due to **sampling variation** which occurs because we are unable to survey the entire population of interest.

We are usually unable to survey the entire population (take a census) as it is too large and/or there are:

- budget constraints
- time limits
- logistical barriers

This means we are unable to establish the **parameters** of interest within our population, such as:

- 2. Population proportion, p or
- 4. Difference in population proportions, $p_1 p_2$

This means that the **parameter** of interest is an **unknown numerical**

characteristic

for that particular population.

To estimate an <u>unknown</u> <u>numerical characteristic</u> (parameter) for our population of interest, we take a sample and find a sample estimate from it (that is, we make a statistical inference). The sample estimates of the above population parameters are:

- 2. Sample proportion, \hat{p}
- 4. Difference in sample proportions, $\hat{p}_1 \hat{p}_2$

Usually ^_{HATS} or BARS are used to distinguish between **sample estimates** and **population parameters**.

We use **sample** <u>data</u> to make inferences (draw conclusions) about **population** <u>parameters</u> by carrying out hypothesis tests and constructing confidence intervals.

- A **significance test** tests one possible value for the parameter, called the **hypothesised** value. We determine the strength of evidence provided by the data against the null hypothesis, H_0 .
- A **confidence interval** gives a range of plausible values for the parameter of interest that is consistent with the data (at the specified level of confidence).

A significance test determines the **strength** of the evidence **against** the **hypothesised** value, while a confidence interval determines the **size** of the effect or difference.

Significance testing and confidence intervals are methods used to deal with the **uncertainty** about the true value of a parameter caused by the **sampling variation** in estimates.

Step-by-Step Guide to Performing a Hypothesis Test by Hand State the **parameter** of interest (symbol and words).

For example, is it p_1 , p_1 , p_2 , or p_1 – p_2 ?

- **e.g.** H_0 : parameter = hyp. val. State the **null hypothesis**, H_0 .
- State the alternative hypothesis, H_1 . e.g. H_1 : parameter \neq hyp. val.

or H_1 : parameter > hyp. val.

 H_1 : parameter < hyp. val.

- State the **estimate** and its value.
- Calculate the test statistic: 5.

For example, for a *t*-test statistic:

estimate – hypothesised value • Use: $t_0 =$ std error

see back page for Formulae Sheet

- Use the estimate from Step 4 and the hypothesised value from Steps 2&3.
- Use the appropriate standard error. (Will be provided)
- Calculate t_0 .

Estimate the **P-value**. (Will be provided)

Interpret the *P-value*.

(see page 13)

some #

Calculate the confidence interval.

For example, for a Normality-based confidence interval:

- Use: estimate ± t × se(estimate)
- Use the estimate from Step 4 and the standard error from Step 5.
- Use the appropriate t-multiplier. (Will be provided) \$\frac{1}{2} \tag{1.96}

Interpret the confidence interval using plain English.

10. Give an overall conclusion. for 2.84.

- There are four different types of problem:
 - 1. Single mean 2. Single proportion 3. Difference between two means
 - 4. Difference between two proportions:

Situation (a) **Proportions from two independent samples**

Situation (b) One sample of size n, several response categories

Situation (c) One sample of size n, many yes/no items

3 sampling situations for the difference between two proportions

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 1999.

From Chance Encounters by C.J. Wild and G.A.F. Seber, @ John Wiley & Sons, 2000.

Identifying the Sampling Situations:

