Annotated Engineering Report

Contents
1. Annotated example of an Engineering Report based on a piece of experimental work
2. Guidelines about report writing, with examples from the Engineering Report.

<table>
<thead>
<tr>
<th>Annotation key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tentative claims</td>
</tr>
<tr>
<td>Strong claims</td>
</tr>
<tr>
<td>Transition signals</td>
</tr>
<tr>
<td>Specialised vocabulary</td>
</tr>
</tbody>
</table>

Please note that this paper can be used by teaching staff as a teaching resource provided that acknowledgement is given. It can also be used by students as a self-study tool; however, the text cannot be copied and used in students’ assignments. Copyright for the original assignment texts remains with the students who wrote them.
ELECTROMAGNETIC ENERGY HARVESTER

Nicholas Finch
May 2015

EXECUTIVE SUMMARY

This report explores the design of an electromagnetic energy harvester to produce power from vibrating machinery. Using a simplified experimental model, the effect of frequency, load resistance and coil parameters on the maximum electrical power was investigated. Results were comparable with data in modern literature and indicated that a small amount of power can be produced. However, further research and development is required to optimise the energy harvester before it is fit for application.

As this example shows, the title of an engineering report should be concise and informative so that the reader can quickly discover what the report is about (Silyn-Roberts, 2012).

The purpose of the Executive Summary is to explain what the report is about: the purpose of the study, the experimental design, key results, and conclusions, including the need for future research.

The writer begins by identifying the problem the report is addressing.

Then, the writer outlines the experimental design and states what he investigated in the study. Note the use of the passive voice here to ensure that the focus is on the experimental model rather than the researcher.

In the last sentence, the writer points out what research is required in the future. It is important to make this sentence as specific as possible so that it is clear what other researchers could focus on.

Please note that this paper and the images within it cannot be further copied and used, as copyright for this work remains with the student who wrote it.
Creating a Table of Contents can be done easily and automatically if you use Heading Styles as you write your report in Word. When you are ready to create your Table of Contents, you just need to click on ‘Table of Contents’ in the References tab.

TABLE OF CONTENTS

Executive Summary ... iii
List of Figures ... vi
List of Tables .. vi
List of Equations .. vi
Introduction .. 1
Electromagnetic Energy Harvester ... 1
 Physical Principle ... 1
 Experimental Setup .. 1
 Extracting Maximum Power .. 2
 Transduction Mechanism ... 3
 Material Properties ... 3
 Magnetic Characteristics .. 3
 Simulated Frequency ... 3
 Actual Frequency ... 4
 Electromagnetic Generator .. 4
 Construction ... 4
 Inductor Core ... 5
Results .. 5
Discussion ... 7
Conclusions .. 8
References ... 9
Appendices .. 10
 Appendix A – Definition of Equation 1 and 2 Terms 10
 Appendix B – Definition and Values of Equation 3 Terms 10
 Appendix C – Material Properties for Polypropylene and Neodymium 10
LIST OF FIGURES
Figure 1 – Experimental setup showing the inductor coil, permanent magnets on the cantilever, and vibration-inducing shaker unit ... 1
Figure 2 – Equivalent model of the electromagnetic generator and connected load .. 3
Figure 3 – The cantilever dimensions and deflection test force loading .. 3
Figure 4 – ANSYS modelling of the cantilever to calculate its resonant frequencies 4
Figure 5 – Construction method of the air-core inductor coils (a) and a typical ferrite-core inductor (b) 5
Figure 6 – Output power against load impedance for each coil .. 6
Figure 7 – Output voltage in response to cantilever excitation frequency .. 6
Figure 8 – The 250 turn air-core coil (with mm ruler for scale) ... 7

LIST OF TABLES
Table 1 – Parameters influential on the power obtained from the energy harvester .. 2
Table 2 – Resonant frequencies for different cantilever systems ... 4
Table 3 – Measured dimensional and electrical properties of the two air-core coils 5

LIST OF EQUATIONS
Equation 1 – Instantaneous output power of the energy harvester ... 2
Equation 2 – Electromagnetic damping .. 2
Equation 3 – Modulus of elasticity for a small cantilever deflection .. 3
Equation 4 – Electrical power output 5

*Please note that these page numbers do not correspond to the page numbers used in this annotated version of the Report

write@uni
Annotated Engineering Report
May2017
INTRODUCTION

Small, low-power wireless sensors have applications across a wide range of industries. In order to fully utilise their wireless functionality, it is desirable to power them from a source that does not need replacing.

This report considers the design of an electromagnetic energy harvester that could be used to power a wireless sensor attached to vibrating machinery. A shaker unit and a resistive load were used to model the machine vibration and sensor’s power requirement respectively. The factors involved in maximum power generation were investigated.

ELECTROMAGNETIC ENERGY HARVESTER

Physical Principle

According to the laws of electromagnetism, a changing magnetic flux through a conductor will induce a voltage in the conductor. In the case the magnetic field is produced by a permanent magnet, a flux change may be created by relative motion between the magnet and the conductor. If the conductor is then connected to a resistive load, a current will be able to flow and electrical power will be produced.
The experiments described in this report feature permanent magnets attached to a vibrating cantilever as the transduction mechanism, and stationary wire-wound copper coils as the electromagnetic generator. A potentiometer was connected to the copper inductor to complete the circuit and thus allow the delivered power to be measured.

Experimental Setup

The physical arrangement of the experiment is shown in Figure 1. As indicated, two permanent neodymium magnets were attached to a thin polypropylene cantilever, which was excited at its fixed end by a variable-frequency shaker unit. Inductor coils were placed approximately 1mm from the cantilever and were connected to external instrumentation to measure their electrical properties and generated voltage.

Figure 1 – Experimental setup showing the inductor coil, permanent magnets on the cantilever, and vibration-inducing shaker unit
The resistive load and shaker unit frequency for each of the four test coils were adjusted to determine the effect on the harvested energy. The construction of the cantilever and distance between the coil and magnets were not changed.

Extracting Maximum Power

Mathematical analysis shows there are three main parameters that affect the power extracted by the energy harvester [1]. These are outlined in Table 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Meaning</th>
<th>Has effect on</th>
<th>Ideal value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical damping</td>
<td>Parasitic damping of the cantilever motion due to friction and interaction with the coil’s core</td>
<td>Cantilever motion (responsible for the change in magnetic flux)</td>
<td>Low</td>
</tr>
<tr>
<td>Magnetic flux density</td>
<td>Strength of the magnetic field</td>
<td>Maximum voltage induced in the conductor</td>
<td>High</td>
</tr>
<tr>
<td>Electrical damping</td>
<td>Electromagnetic damping of the cantilever due to magnetic interaction with the coil</td>
<td>Electromagnetic force (transforms mechanical to electrical energy)</td>
<td>High</td>
</tr>
</tbody>
</table>

On the surface, it appears quite straightforward to adjust the parameters to maximise power output. However, significant nonlinear coupling between each factor makes manipulation of one term without affecting another extremely difficult. For example, the electrical damping should ideally be equal to the mechanical damping in order to match

Note the first reference to the literature at the end of the sentence, where the number [1] appears. As is the convention in engineering, a numbered referencing style is used. The full reference for this citation can be found in the list of References at the end of the report.

See how the writer introduces the Table in the sentence immediately before it appears. To be more concise, this sentence could also be written as follows: "See Table 1.”

Here the writer skilfully links his argument by using two transition signals: “However” indicates a contrasting thought (from appearing to be “quite straightforward” to being “extremely difficult”); “For example” indicates that an illustration is being given (of something that is “extremely difficult” to achieve).
damping losses and achieve maximum power [1]; however, it also is desired to have one term very large and the other very small.

The instantaneous output power of the energy harvester can be calculated as

\[P_e = F_{em} v = (D_{em} v) v \]

(1)

where \(F_{em} \) is the electromagnetic force acting against the permanent magnetic field, \(v \) is the velocity of the cantilever tip, and \(D_{em} \) is the electromagnetic damping expressed by Equation 2 [2]. A full description of all terms is given in Appendix A.

\[D_{em} = \frac{1}{R_L + R_r + j\omega L_r} \left(\frac{d\Phi}{dt} \right)^2 \]

(2)

It is this relationship that forms the basis of the problem for maximising power: there is a difficult compromise between increasing the damping to increase the electromagnetic force, and reducing the damping to increase the change in magnetic flux. The coupling between the damping factors and magnetic flux in the physical system means that a suitable balance has to be found.

An additional consideration for output power is the load resistance connected to the coil. By modelling the generator as an AC voltage source, ideal inductor and resistor in series, it is apparent that the impedance of the load must match that of the coil in order to receive maximum power. Figure 2 demonstrates this equivalent circuit.
Transduction Mechanism

Material Properties

The simple static deflection test represented in Figure 3 was performed to calculate the elastic modulus of the polypropylene cantilever. By adding a small mass to the tip of the beam and measuring its displacement, the modulus can be expressed as

\[E = \frac{3\delta f}{m_r g L^2} \]

(3)

where the definition of each term is described in Appendix B. Using Equation 3, the modulus was calculated as 2.847 GPa. This value is similar to 1.5-2 GPa estimations of polypropylene [3], but is slightly larger due to its sandwiched composite structure.

Magnetic Characteristics

The magnets had a large flux density of approximately 0.25 Tesla each. Neodymium also has high coercivity, so the opposing magnetic field from the generator would not depole the magnets.
Simulated Frequency

A computer model was created in ANSYS to calculate the natural frequencies of the cantilever (and thus the excitation frequencies at which tip displacement was maximum). By simulating a vertical acceleration at the fixed end and allowing the other end to oscillate, the frequencies of the cantilever were determined. As displayed in Figure 4, the lowest of these natural frequencies was approximately 13 Hz.

\[\begin{array}{|c|c|}
\hline
\text{Mode} & \text{Frequency [Hz]} \\
\hline
1 & 13.258 \\
2 & 130.36 \\
3 & 207.7 \\
4 & 230.78 \\
5 & 588.35 \\
6 & 1169.3 \\
\hline
\end{array} \]

\textit{Figure 4 – ANSYS modelling of the cantilever to calculate its resonant frequencies}

The higher frequencies found by the computer model correspond to different vibrational modes of the cantilever. As power is inversely proportional to the frequency, these modes were not considered and the beam was only excited at frequencies below 30 Hz.

Actual Frequency

By varying the frequency of the shaker unit and observing the vibrational magnitude of the cantilever, the resonant frequency of the physical system was found to be around 13.5 Hz, where peak-to-peak amplitude was estimated as 10 mm. Placing the coils near the tip also affected the resonant frequency of the system, as the magnetic interaction increased the effective stiffness of the beam. A comparison of these different responses is displayed in Table 2. All frequency tests were performed with the coils oriented horizontally.
Table 2 – Resonant frequencies for different cantilever systems

<table>
<thead>
<tr>
<th>Cantilever system</th>
<th>Approximate resonant frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No load</td>
</tr>
<tr>
<td>Simulation</td>
<td>13</td>
</tr>
<tr>
<td>No coil connected</td>
<td>13.5</td>
</tr>
<tr>
<td>Short coil (ferrite-core)</td>
<td>15</td>
</tr>
<tr>
<td>Long coil (ferrite-core)</td>
<td>15</td>
</tr>
<tr>
<td>360 turn coil (air-core)</td>
<td>14</td>
</tr>
<tr>
<td>250 turn coil (air-core)</td>
<td>14</td>
</tr>
</tbody>
</table>

Electromagnetic Generator

Construction

The two **ferrite-core coils** used were commercially manufactured, similar to the inductor shown in Figure 5 (b). The other two **air-core coils** were made manually by looping 33SWG copper enamelled wire around circular metal shafts, which were lightly greased to allow the coil to be removed easily after winding. One of the **air-core coils** in mid-construction is shown in Figure 5 (a).

![Figure 5](image)

Figure 5 – Construction method of the air-core inductor coils (a) and a typical ferrite-core inductor (b)

Although the windings of the manually-constructed coils were less uniform than manufactured ones, rough physical dimensions (and therefore electrical properties) could be controlled. This allowed the relative effect of each term on the electromagnetic damping and thus the power produced by each coil to be investigated. The measured characteristics are listed in Table 3.

Table 3 – Measured dimensional and electrical properties of the two air-core coils

<table>
<thead>
<tr>
<th>Coil</th>
<th>No. of turns</th>
<th>Diameter (mm)</th>
<th>Thickness (mm)</th>
<th>Wire Length (mm)</th>
<th>Resistance (Ω)</th>
<th>Inductance (mH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>360</td>
<td>1</td>
<td>9</td>
<td>18</td>
<td>4200</td>
<td>2.42</td>
</tr>
<tr>
<td>2</td>
<td>250</td>
<td>3</td>
<td>10</td>
<td>12</td>
<td>5000</td>
<td>2.79</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.24</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8.75</td>
</tr>
</tbody>
</table>

Coil 1 was made with less wire, a smaller cross-sectional area and longer thickness in order to have a lower resistance and inductance [6] (reducing the denominator of
Equation 2), and coil 2 was made with a larger cross-sectional area to increase the flux linkage (increasing the numerator of Equation 2). Coils 3 and 4 in the table are the long and short ferrite-core, respectively.

Inductor Core

Adding a core with a high permeability to the inductor strengthens the magnetic field interactions between the coil and the permanent magnets. This increases the flux linkage and allows for greater electromagnetic forces. However, it also introduces additional mechanical damping through hysteresis and eddy current losses in the core.

RESULTS

Each of the four coils was tested at load resistances ranging from 1-10 Ω. The RMS voltage was measured and the power was calculated as per Equation 4. The experimental results are shown in Figure 6.

\[
P_{\text{RMS}} = \frac{V_{\text{RMS}}^2}{R_L}
\]

The **figures** contain all the **detailed data**, and the **accompanying text** in the Results identifies the **trend** in the data. Note that any interpretative observations will be made in the Discussion.

Figure 6 – Output power against load impedance for each coil
The 250 turn coil delivered 2.6 μW, the most power out of all the coils, and about 50% more than the next best coil. The 360 turn coil delivered the least amount of power, with a maximum output less than 0.25 μW. The larger ferrite-core coil performed better than the smaller one, with a peak power of 1.75 μW compared to 0.5 μW.

All coils produced maximum power at a load close to their own impedance, at around 8 Ω for the short ferrite-core and between 2-3 Ω for the other three coils.

Each coil exhibited a similar response to variations in the shaker unit frequency, with a peak voltage generated at one frequency and very little voltage produced at other frequencies. The measured voltage against frequency for the 250 turn coil is shown in Figure 7, with a peak voltage at 14.2 Hz. The coil itself is shown in Figure 8.

![Figure 7](image_url)
Figure 7 – Output voltage in response to cantilever excitation frequency
DISCUSSION

The average power output from each of the coils was in the order of microwatts. This amount of power is typical of electromagnetic energy harvesters, but the inductor design could still be improved to further increase power extraction; relatively similar electromagnetic systems have been recorded to deliver a significantly larger 46μW [7]. The results demonstrate that slight changes to the coil parameters cause significant variation in output power.

The dependence of maximum power on the impedance of the load is clear from Figure 6. When the resistance is too low, not enough voltage is developed across the load, and when it is too high, not enough current is drawn. As expected from theory, maximum power occurs when the load impedance matches that of the coil.

Due to the low operating frequency, the inductance of the coils had very...
little impact on the electromagnetic damping (as per Equation 2). This meant that the
low-inductance construction of the 360 turn coil did not improve its power output.

Conversely, the variation in magnetic flux linkage had a significant effect on the
results. This is shown by the power obtained by the 250 turn coil – the greater cross-
sectional area of this inductor increased the change in magnetic flux, increasing the
electromagnetic damping (as per Equation 2) and therefore increasing the power. The
shorter thickness of the coil also meant that more of the turns were closer to the
stronger part of the magnetic field (in contrast to the thicker 360 turn coil).

Although the ferrite-cores for the other two coils increased magnetic interaction, they
also caused more mechanical damping and limited the velocity of the cantilever. This
had an overall effect of reducing the rate of change of flux and lowering the
maximum power. The short coil was especially ineffective, as its large impedance also
reduced electrical damping, further reducing the maximum output power. However, it
is useful to note that while more mechanical damping decreases peak power, the
bandwidth of the frequency and load increases, thus increasing the energy
harvester’s versatility to different operating conditions.

Ideally, an inductor core should have high permeability (to support a magnetic field),
low coercivity (to reduce hysteresis when being magnetised) and a high resistance (to
reduce eddy current losses) [8]. The soft ferrite cores used in the two test coils
exhibit these properties, but still increase the mechanical damping of the system. This
damping effect increases at higher frequencies (and when the coil is oriented
horizontally), as energy loss occurs for each change in the direction of the magnetic
field. Manganese, a paramagnetic material [9], could be used as an alternative core
to increase the field strength without introducing losses. Unlike iron-based
compounds, it does not retain its magnetisation and therefore will not contribute to
damping through hysteresis.

As the coils were oriented horizontally, the electrical AC frequency was effectively
twice that of the cantilever vibration (as the coil was cut twice for each pass of the
magnets), and the output voltage was a distorted sinusoidal waveform. It is expected
that this orientation of the coil generates more power than when they are vertical, as
the rate of change of flux is greater. However, this theory was untested.

More work is required before the energy harvester can be implemented as a
power source for a wireless sensor. Besides further improvement of the coil

As can be seen here, the writer acknowledges the limitations of the study and possibilities for further research in the Discussion section.
parameters, development into the rectification of the output power is also necessary in order to extract useful electrical energy from the harvester. From testing, it was observed that different coils and loading affected the damping and increased the resonant frequency of the cantilever; further investigation into this physical coupling should be carried out and the energy harvester tuned in order to produce maximum power at the resonant frequency of the vibrating machinery.

CONCLUSIONS

• The maximum power output was achieved with a short air-core coil, delivering 2.6 μW to a 3 Ω load at the resonant frequency of 14.2 Hz.
• Very little power was able to be extracted when operating outside the resonant frequency of the cantilever and without a matched load impedance.
• The greatest influence on the energy harvester output was the rate of change of flux linkage. This was best increased by increasing the cross-sectional area of the coil, and reducing mechanical damping.
• Designing coils for maximum power is extremely difficult, and experimentation is necessary to observe the complex relationship between the electrical, mechanical and magnetic elements of the system.
REFERENCES

APPENDICES

Appendix A – Definition of Equation 1 and 2 Terms

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>Vertical displacement of cantilever tip</td>
<td>0.014 m</td>
</tr>
<tr>
<td>$m_T g$</td>
<td>Total force at tip due to the magnets and added mass</td>
<td>0.0498 N</td>
</tr>
<tr>
<td>L</td>
<td>Horizontal length of cantilever</td>
<td>0.050 m</td>
</tr>
<tr>
<td>b</td>
<td>Cantilever width</td>
<td>0.005 m</td>
</tr>
<tr>
<td>h</td>
<td>Cantilever thickness</td>
<td>0.0005 m</td>
</tr>
<tr>
<td>I</td>
<td>Second moment of area about the neutral axis, equal to $(bh^3)/12$</td>
<td>5.21×10^{-4} m4</td>
</tr>
<tr>
<td>E</td>
<td>Young’s Modulus of elasticity (calculated)</td>
<td>2.847 GPa</td>
</tr>
</tbody>
</table>

Appendix B – Definition and Values of Equation 3 Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_e</td>
<td>Electrical power output</td>
</tr>
<tr>
<td>F_{em}</td>
<td>Electromagnetic force opposing magnetic field</td>
</tr>
<tr>
<td>D_{em}</td>
<td>Electromagnetic damping</td>
</tr>
<tr>
<td>v</td>
<td>Cantilever tip velocity</td>
</tr>
<tr>
<td>R_l</td>
<td>Load resistance</td>
</tr>
<tr>
<td>R_c</td>
<td>Coil resistance</td>
</tr>
<tr>
<td>L_c</td>
<td>Coil inductance</td>
</tr>
<tr>
<td>ω</td>
<td>AC frequency</td>
</tr>
</tbody>
</table>

Appendix C – Material Properties for Polypropylene and Neodymium

<table>
<thead>
<tr>
<th>Material Property</th>
<th>Polypropylene</th>
<th>Neodymium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (kg/m3)</td>
<td>1533.3</td>
<td>7500</td>
</tr>
<tr>
<td>Young’s modulus (GPa)</td>
<td>2.85</td>
<td>160</td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td>0.45</td>
<td>0.24</td>
</tr>
</tbody>
</table>
Engineering Reports

Background to this engineering report
The above engineering report was written by a student in the final year of his degree at the University of Auckland based on a piece of experimental work he carried out for a MECHENG course.

Sections of an Engineering Report
There are many different ways to structure an engineering report; the structure chosen depends on the type of report (e.g., general report, design report) (Silyn-Roberts, 2012). This report, based on a piece of experimental work, includes the following sections: Title page, Executive Summary, Table of Contents, List of Figures, List of Tables, List of Equations, Introduction, Electromagnetic Energy Harvester (a specific title for this particular report), Results, Discussion, Conclusions, References, and Appendices.

Because there are several different types of engineering reports, it is vital that you follow the course guidelines about expectations of the sections to be included, referencing style, formatting and length of each section. Below is a brief overview of each section of an engineering report based on experimental work:

Title page
The Title page takes up the first page of an engineering report. Information placed on this page includes the title of the report, the course name, the writer’s name, and the date (month, year).

Executive Summary
The purpose of the Executive Summary is to explain what the report is about: the purpose of the study, the experimental design, key results, and conclusions, including the need for future research.

Table of Contents
The Table of Contents enables the reader to get an immediate overview of what is included in the report and where each part is located.

List of Figures, Tables, and Equations
The List of Figures, Tables and Equations follows the Contents page. The List of Figures is always placed first. Each Figure is numbered sequentially with a brief title and listed with its page number.

Introduction
The Introduction gives the reader the opportunity to understand what the study is about, why it was done, and how it was carried out.

Title will vary for this section (Electromagnetic Energy Harvester)
Unlike the other sections, this section and the sub-sections within it are not labelled with a conventional title, but rather with headings that are appropriate for the particular report (cf. Silyn-Roberts, 2012). This section may include the experimental procedure, the materials, theory, and reference to the literature.

Results
The Results section describes what was found or observed in the study. Key data are presented pictorially, for example, in line graphs.
Discussion
The Discussion is perhaps the most challenging to write because the writer needs to interpret the results in relation to the objectives of the study. They can also compare their results to what has been found in the literature, possibly drawing on new literature not previously mentioned. Further, the writer needs to explain how the research has moved understanding about the research area forward and may mention the limitations of the study (cf. Bates College, 2011).

Conclusions
This section gives the writer the chance to sum up the main findings of the research.

References
This section comprises a list of all references referred to in the research paper.

Appendices
It is usual practice to put non-essential information, which provides further clarification of a point in an Appendix. Appendices are sequentially labelled with letters of the alphabet. Placing the information here means that unnecessary space is not used within the body of a paper (Bates College, 2011).

Distinctive language features of engineering research reports
Engineering reports have a number of distinctive language features, which are outlined below:

Parallelism
One distinctive feature of well-written engineering reports is the use of parallelism, which means that the same grammatical pattern is used in lists or comparisons. The writer skilfully uses parallelism in this report, which makes it easier for the reader to follow the argument; e.g.,

(1) It is this relationship that forms the basis of the problem for maximising power: there is a difficult compromise between increasing the damping to increase the electromagnetic force, and reducing the damping to increase the change in magnetic flux.

(2) Ideally, an inductor core should have high permeability (to support a magnetic field), low coercivity (to reduce hysteresis when being magnetised) and a high resistance (to reduce eddy current losses) [8].

Pronoun usage
A further feature is related to the use of personal pronouns (e.g., I, he, we). Check with your lecturer whether it is appropriate to use these because in some cases they can be used. No pronouns, however, are used in this report. Rather, the writer uses passive voice to avoid any need of mentioning his role in carrying out the study; e.g.,

(1) A computer model was created in ANSYS to calculate the natural frequencies of the cantilever ...

(2) From testing, it was observed that different coils and loading affected the damping and increased the resonant frequency of the cantilever
Specialised vocabulary

Another feature of well-written research reports is that specialised vocabulary is correctly used. As you can see in the following two sentences, the writer has correctly used three different forms of the root word "magnet":

According to the laws of electromagnetism, a changing magnetic flux through a conductor will induce a voltage in the conductor. In the case the magnetic field is produced by a permanent magnet, a flux change may be created by relative motion between the magnet and the conductor.

Indeed, in each case the writer has used the correct form of the word (i.e., noun, adjective) and used it within appropriate collocations; that is, with words that frequently combine together; i.e.,

- the laws of electromagnetism (noun)
- magnetic flux (adjective)
- magnetic field (adjective)
- permanent magnet (noun)
- between the magnet and the conductor (noun)

Given the importance of correctly using specialised vocabulary, you may find it useful to build a glossary and focus on learning these words so that you are familiar with their meaning, the words they collocate with, and the various forms of the word.

Expressing an opinion or the author’s “voice”

As you can see in the above report, it is possible for the writer to position themselves and express their opinion through their choice of language. Writers can make tentative claims by using "hedging" devices (e.g., appears, slightly) or strong claims (e.g., extremely) when they are certain about the point they are making. Further, writers can comment on something striking, unexpected or of interest to the reader by using adverbs (e.g., ideally).

Tentative claims

Tentative claims or “hedging” are made most frequently in the Electromagnetic Energy Harvester section of this report. The writer uses hedging devices here because he needs to interpret the results of his study in light of previous research and he may be less certain of the claim he is making. The writer either uses adverbs (slightly), verbs with a weak meaning (appear), or modal verbs (could, may) to express uncertainty:

- Adverb
 This value is similar to 1.5-2 GPa estimations of polypropylene [3], but is slightly larger due to its sandwiched composite structure.

- Verb
 On the surface, it appears quite straightforward to adjust the parameters to maximise power output.

- Modal
 In the case the magnetic field is produced by a permanent magnet, a flux change may be created by relative motion between the magnet and the conductor.

Strong claims

The writer makes strong claims by using adverbs (e.g., extremely, very, especially) and adjectives (e.g., significant, greatest) that have a strong meaning. These adverbs and adjectives are sometimes referred to as "boosters” or "intensifiers”. Some strong claims are made in the Electromagnetic Energy Harvester section; e.g.,
However, significant nonlinear coupling between each factor makes manipulation of one term without affecting another extremely difficult.

The majority of strong claims, however, are made in the Discussion and Conclusions sections of this report where the writer interprets the results; e.g.,

Due to the low operating frequency, the inductance of the coils had very little impact on the electromagnetic damping (as per Equation 2). [Discussion]

The short coil was especially ineffective, as its large impedance also reduced electrical damping, further reducing the maximum output power. [Discussion]

Designing coils for maximum power is extremely difficult, and experimentation is necessary to observe the complex relationship between the electrical, mechanical and magnetic elements of the system. [Conclusions]

Another way to express the writer’s voice
It is possible for writers to make subjective comments when interpreting the results in the Discussion by using words (e.g., obviously, surprisingly, ideally) and phrases (e.g., it is useful to note, in particular). Although not done often, the writer of this report skilfully makes a couple of subjective comments in the Discussion:

Ideally, an inductor core should have high permeability (to support a magnetic field), low coercivity (to reduce hysteresis when being magnetised) and a high resistance (to reduce eddy current losses) [8].

However, it is useful to note that while more mechanical damping decreases peak power, the bandwidth of the frequency and load increases, thus increasing the energy harvester’s versatility to different operating conditions.

Verb usage
This engineering report is characterised by frequent shifts in tense (past, present) and voice (active and passive). The perfect aspect is only used in the Discussion. Detailed analysis of verb usage can be found in the annotated comments in the body of the paper. A few general comments are given here.

Verb tenses
Executive Summary
The present tense is used to:

- Describe the problem the report is exploring:
 - This report explores the design of an electromagnetic energy harvester to produce power from vibrating machinery.

- Highlight the need for further research:
 - However, further research and development is required to optimise the energy harvester before it is fit for application.

The past tense is used to:

(1) Report on the methodology used
 - Using a simplified experimental model, the effect of frequency, load resistance and coil parameters on the maximum electrical power was investigated.
(2) Report overall results
Results were comparable with data in modern literature and indicated that a small amount of power can be produced.

Introduction
The present tense is used to:

(1) Give a broad introduction to the topic
Small, low-power wireless sensors have applications across a wide range of industries.

(2) Highlight the need for the current research
In order to fully utilise their wireless functionality, it is desirable to power them from a source that does not need replacing.

(3) State the purpose of the current research
This report considers the design of an electromagnetic energy harvester that could be used to power a wireless sensor attached to vibrating machinery.

The past tense is used to:

Describe the procedure that was used to collect the data
A shaker unit and a resistive load were used to model the machine vibration and sensor’s power requirement respectively. The factors involved in maximum power generation were investigated.

Electromagnetic Energy Harvester
The present tense is used to:

(1) Describe the figures, tables, and equations; e.g.,
These are outlined in Table 1.

(2) Present well-established facts; e.g.,
Mathematical analysis shows there are three main parameters that affect the power extracted by the energy harvester [1].

(3) Describe the existing situation; e.g.,
An additional consideration for output power is the load resistance connected to the coil.

The past tense is used to:

Describe the experimental set up; e.g.,
As indicated two permanent neodymium magnets were attached to a thin polypropylene cantilever, ...

Results
The past tense dominates the results section where the writer presents the results of the study; e.g.,

All coils produced maximum power at a load close to their own impedance, at around 8 Ω for the short ferrite-core and between 2-3 Ω for the other three coils.

The present tense is only used to refer to the Figures; e.g.,
The experimental results are shown in Figure 6.
Discussion
There are frequent switches between the present and past tense in the Discussion. The present tense is used, for example, in the interpretation of the results:

As expected from theory, maximum power occurs when the load impedance matches that of the coil.

The present tense is also used to acknowledge the need for further research:

More work is required before the energy harvester can be implemented as a power source for a wireless sensor.

Reference to the past tense is made, for example, when referring to the results of the current study:

Due to the low operating frequency, the inductance of the coils had very little impact on the electromagnetic damping (as per Equation 2).

Conclusions
The past tense is mainly used in the Conclusions where the writer sums up the main findings of the research; e.g.,

The greatest influence on the energy harvester output was the rate of change of flux linkage.

The present tense, however, is used to describe the current state and the possibilities for future research:

Designing coils for maximum power is extremely difficult, and experimentation is necessary to observe the complex relationship between the electrical, mechanical and magnetic elements of the system.

Active and passive voice
As evident in the above examples of verb tenses, both active and passive voice are used throughout this engineering report. The writer chooses whether to use the active or passive voice depending on what is being said and where the focus is to be.

When the active voice is used, the subject of the sentence is the doer or performer of the action, and the object is the receiver of the action. The active voice in the following example from the Results is used because the writer wants the focus to be on the performer of the action:

All coils produced maximum power at a load close to their own impedance ...

In contrast, passive voice is used in this section of the Results where there writer wants to focus to be on the receiver of the action:

The measured voltage against frequency for the 250 turn coil is shown in Figure 7 ...

You can see that the past passive is predominantly used where the experimental procedure is referred to because the focus is on the result of the action that has been completed, rather than on who carried it out:

A shaker unit and a resistive load were used to model the machine vibration and sensor’s power requirement respectively.
Aspect

The progressive aspect (e.g., It is starting) is not used at all in the report and the perfective aspect (e.g., It has started) is only used once. The present perfect passive is used in the Discussion to show that the action that took place in the past is still of relevance now:

The amount of power is typical of electromagnetic energy harvesters, but the inductor design could still be improved to further increase power extraction; relatively similar electromagnetic systems have been recorded to deliver a significantly larger 46μW [7].

Reduced relative clauses

A further feature of engineering research reports is the use of reduced relative clauses. In this report such clauses are used in the Electromagnetic Energy Harvester, the Results, and the Discussion sections. Use of such clauses helps make the writing concise. Reduced relative clauses are in the passive voice and should not be confused with the simple past tense as this example illustrates:

The soft ferrite cores used in the two test coils exhibit these properties. [passive voice]

The verb “used” in the above example is the non-finite –ed participle. If this clause had been written as a full relative clause, it would say:

The soft ferrite cores that were used in the two test coils ...

In contrast, if this sentence had been written in the active voice, the verb “used” would be in the past tense:

The researcher used the soft ferrite cores in the two test coils … [active voice]

Writing the above sentence in the active voice, however, would place unnecessary focus on the researcher carrying out the action.

Modal verbs

Modal verbs are used for a number of reasons which include:

(1) Expressing uncertainty; e.g.,
In the case the magnetic field is produced by a permanent magnet, a flux change may be created by relative motion between the magnet and the conductor.

(2) Making a strong claim; e.g.,
According to the laws of electromagnetism, a changing magnetic flux through a conductor will induce a voltage in the conductor.

(3) Expressing possibility; e.g.,
This report considers the design of an electromagnetic energy harvester that could be used to power a wireless sensor attached to vibrating machinery.

Manganese, a paramagnetic material [9], could be used as an alternative core to increase the field strength without introducing losses.
Developing a coherent argument

An important feature of a well-written research report is that it is coherent and well-structured. A variety of strategies can be used to ensure that the ideas are logically connected to one-another. One is to use “transition signals” such as “however” and “for example”:

On the surface, it appears quite straightforward to adjust the parameters to maximise power output. However, significant nonlinear coupling between each factor makes manipulation of one term without affecting another extremely difficult. For example, the electrical damping should ideally be equal to the mechanical damping in order to match damping losses and achieve maximum power [1]; however, it also is desired to have one term very large and the other very small.

Another feature is to use a pronoun such as “it”, “this” or “these”. If using a pronoun, however, check that the meaning is clear as in the following example where the pronoun “it” clearly represents “the energy harvester”:

However, further research and development is required to optimise the energy harvester before it is fit for application.

Otherwise, if the meaning of the pronoun is not clear, it is preferable to repeat the noun or noun phrase, or use a synonym or a noun phrase, as shown in this example:

Using Equation 3, the modulus was calculated as 2.847 GPa. This value is similar to ...

References

Bates College (2011). Department of Biology. Lewiston, Maine: USA.
